Using machine learning and big data for the prediction of venous thromboembolic events after spine surgery: A single-center retrospective analysis of multiple models on a cohort of 6869 patients

医学 Lasso(编程语言) 逻辑回归 多重共线性 人工智能 随机森林 回归分析 回归 接收机工作特性 机器学习 线性回归 预测建模 支持向量机 统计 计算机科学 内科学 数学 万维网
作者
Jonathan Dallas,BenjaminS Hopkins,MichaelB Cloney,EkamjeetS Dhillon,Pavlos Texakalidis,V Nguyen,Matthew Ordon,Najib E. El Tecle,T Y Chen,PatrickC Hsieh,JohnC Liu,T Koski,NaderS Dahdaleh
出处
期刊:Journal of Craniovertebral Junction and Spine [Medknow Publications]
卷期号:14 (3): 221-229 被引量:2
标识
DOI:10.4103/jcvjs.jcvjs_69_23
摘要

Venous thromboembolic event (VTE) after spine surgery is a rare but potentially devastating complication. With the advent of machine learning, an opportunity exists for more accurate prediction of such events to aid in prevention and treatment.Seven models were screened using 108 database variables and 62 preoperative variables. These models included deep neural network (DNN), DNN with synthetic minority oversampling technique (SMOTE), logistic regression, ridge regression, lasso regression, simple linear regression, and gradient boosting classifier. Relevant metrics were compared between each model. The top four models were selected based on area under the receiver operator curve; these models included DNN with SMOTE, linear regression, lasso regression, and ridge regression. Separate random sampling of each model was performed 1000 additional independent times using a randomly generated training/testing distribution. Variable weights and magnitudes were analyzed after sampling.Using all patient-related variables, DNN using SMOTE was the top-performing model in predicting postoperative VTE after spinal surgery (area under the curve [AUC] =0.904), followed by lasso regression (AUC = 0.894), ridge regression (AUC = 0.873), and linear regression (AUC = 0.864). When analyzing a subset of only preoperative variables, the top-performing models were lasso regression (AUC = 0.865) and DNN with SMOTE (AUC = 0.864), both of which outperform any currently published models. Main model contributions relied heavily on variables associated with history of thromboembolic events, length of surgical/anesthetic time, and use of postoperative chemoprophylaxis.The current study provides promise toward machine learning methods geared toward predicting postoperative complications after spine surgery. Further study is needed in order to best quantify and model real-world risk for such events.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
2秒前
WissF-完成签到,获得积分10
2秒前
第一军团没有秘密完成签到,获得积分10
3秒前
烟花应助李白白采纳,获得10
3秒前
Lucas应助幸福采纳,获得10
3秒前
科目三应助wade2016采纳,获得30
4秒前
5秒前
上官若男应助chong0919采纳,获得10
5秒前
6秒前
8秒前
Crema完成签到,获得积分10
9秒前
9秒前
Lucas应助nature采纳,获得30
9秒前
10秒前
小恶完成签到,获得积分10
11秒前
13秒前
李丽阳完成签到,获得积分10
13秒前
都是发布了新的文献求助10
13秒前
14秒前
16秒前
丘比特应助dczys采纳,获得10
16秒前
欧阳发布了新的文献求助10
17秒前
小二郎应助小恶采纳,获得10
18秒前
18秒前
犹豫依丝发布了新的文献求助10
19秒前
王小白发布了新的文献求助10
20秒前
Hello应助语物采纳,获得10
20秒前
情怀应助colin28采纳,获得10
21秒前
boymin2015发布了新的文献求助10
21秒前
Lin应助都是采纳,获得10
21秒前
Lucas应助都是采纳,获得10
21秒前
22秒前
妮妮发布了新的文献求助10
22秒前
23秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Product Class 33: N-Arylhydroxylamines 300
Machine Learning in Chemistry 300
Experimental research on the vibration of aviation elbow tube by 21~35 MPa fluid pressure pulsation 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387776
求助须知:如何正确求助?哪些是违规求助? 3000307
关于积分的说明 8790936
捐赠科研通 2686334
什么是DOI,文献DOI怎么找? 1471606
科研通“疑难数据库(出版商)”最低求助积分说明 680398
邀请新用户注册赠送积分活动 673160