Hydrodynamic voltammetry of Fe2+/3+ in aqueous deep eutectic solvents towards redox flow batteries

氧化还原 化学 电解质 氯化胆碱 乙二醇 电化学 线性扫描伏安法 化学工程 共晶体系 无机化学 循环伏安法 离子液体 深共晶溶剂 水溶液 电极 有机化学 物理化学 合金 工程类 催化作用
作者
Desiree Mae Prado,Xiaochen Shen,Robert F. Savinell,Clemens Burda
出处
期刊:Electrochimica Acta [Elsevier]
卷期号:467: 143082-143082 被引量:5
标识
DOI:10.1016/j.electacta.2023.143082
摘要

Deep eutectic solvents (DESs) have recently attracted much attention as potential green electrolyte solvents for redox flow batteries. DESs are considered not only as environmentally sustainable but also economically attractive electrolytes because they can be resourced from biological feedstock (alcohols, urea, choline) and are earth-abundant and of low toxicity. Despite these advantages, DESs still have limitations in important aspects such as reactant and ion transport, which is inhibited due to hydrogen-bonding-induced viscosity. Thus, improving the transport properties of redox species in DESs is essential. In addition, we explore the quantitative addition of water to ethaline (a 1:2 choline chloride: ethylene glycol mixture) in order to understand its influence on the kinetics and mass transport properties of DESs. In this work, we show that DESs can be made more fluid and less dense, while avoiding most of the electrochemical instabilities of water. Herein, we investigate the effects of gradually increasing amounts of water to the redox system of Fe2+/3+in ethaline. Our study shows that systematic addition of water leads to a three-fold increase in ionic conductivity and decrease in viscosity that enhances the mass transport and kinetics of DES-based electrolytes while still maintaining an electrochemical window of approximately 1.90 V. The use of environmentally benign electrolyte components together with the observed increase in conductivity will result in a more efficient redox flow battery (RFB) that operates at higher power density without relying on harmful solvents and fossil fuel-based processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lixm发布了新的文献求助10
刚刚
1秒前
春眠不觉小小酥完成签到,获得积分10
2秒前
2秒前
2秒前
JerryZ发布了新的文献求助10
3秒前
3秒前
wewe发布了新的文献求助30
6秒前
昵称发布了新的文献求助10
6秒前
7秒前
hdd完成签到,获得积分10
7秒前
irisjlj发布了新的文献求助10
7秒前
有人应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
SCINEXUS应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
SCINEXUS应助科研通管家采纳,获得20
9秒前
子夜应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
sutharsons应助科研通管家采纳,获得30
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
9秒前
Owen应助科研通管家采纳,获得10
10秒前
SCINEXUS应助科研通管家采纳,获得20
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
科研通AI5应助heidi采纳,获得10
11秒前
浙江嘉兴发布了新的文献求助10
11秒前
14秒前
P4完成签到 ,获得积分10
15秒前
mimicyang发布了新的文献求助10
15秒前
15秒前
16秒前
搞怪白易发布了新的文献求助10
17秒前
浦肯野应助irisjlj采纳,获得10
18秒前
迟大猫应助通~采纳,获得10
20秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851