已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning‐Directed Fast and High‐Throughput Acquisition of High‐Efficiency Microwave Absorbents From Infinite Design Space

微波食品加热 材料科学 吞吐量 计算机科学 带宽(计算) 工艺工程 机器学习 电信 无线 工程类
作者
Renchao Che,Zhengchen Wu,Bin Quan,Ruixuan Zhang,Huiran Zhang,Jincang Zhang,Wencong Lu
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:33 (50) 被引量:23
标识
DOI:10.1002/adfm.202303108
摘要

Abstract Intrinsic composition properties and extrinsic micro‐/nano‐structural effects constitute the infinite design space of microwave absorption (MA) materials wherein the high‐efficiency performance is expected to advance stealth and anti‐interference technologies. However, restricted to the black box of physical mechanisms, discovering those materials too often relies on the traditional trial‐and‐error methods, falling into the time‐consuming loop between material modification and performance measurement. Herein, an unprecedented machine learning‐based forecasting system (MLFS) is constructed to directly predict the process conditions of carbonyl iron/ferrosoferric oxide hybrids with enhanced MA performance. The high‐throughput screening and inverse projection based on pattern recognition recommend a series of excellent MA materials with the highest performance correlation coefficient up to 0.9844. After manual selection from this set, the enhancement of maximum absorption efficiency and bandwidth of the optimal hybrid reach 207% and 360% in comparison with the original database. The standardized MLFS procedure immensely shortens the research cycle to a few weeks compared to several months of the manual orthogonal experiment. This is believed to be an expressway for accelerating the discovery of high‐performance MA materials and their industrialization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
hhhhuo完成签到,获得积分10
2秒前
233发布了新的文献求助30
2秒前
7秒前
xr完成签到 ,获得积分10
8秒前
huang完成签到,获得积分10
10秒前
11秒前
monair完成签到 ,获得积分10
13秒前
哈哈完成签到 ,获得积分10
14秒前
16秒前
不安青牛应助鼠牛虎兔采纳,获得10
19秒前
馒头完成签到,获得积分10
19秒前
ll发布了新的文献求助10
27秒前
是三石啊完成签到 ,获得积分10
27秒前
充电宝应助SuyingGuo采纳,获得30
29秒前
30秒前
31秒前
yznfly应助6666采纳,获得200
33秒前
36秒前
36秒前
37秒前
aaaaaYue发布了新的文献求助10
41秒前
善学以致用应助ll采纳,获得10
41秒前
朝槿完成签到 ,获得积分10
44秒前
Ahui完成签到 ,获得积分10
48秒前
小二郎应助语嘘嘘采纳,获得10
48秒前
诸青梦完成签到 ,获得积分10
48秒前
李白完成签到 ,获得积分10
51秒前
silence完成签到 ,获得积分10
52秒前
yiyeshanren完成签到,获得积分10
54秒前
简单寻冬完成签到 ,获得积分10
56秒前
HeidiW完成签到 ,获得积分10
59秒前
Jasper应助SuyingGuo采纳,获得10
59秒前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
pual应助科研通管家采纳,获得10
1分钟前
pual应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498050
求助须知:如何正确求助?哪些是违规求助? 4595410
关于积分的说明 14449067
捐赠科研通 4528164
什么是DOI,文献DOI怎么找? 2481373
邀请新用户注册赠送积分活动 1465549
关于科研通互助平台的介绍 1438283