Machine Learning‐Directed Fast and High‐Throughput Acquisition of High‐Efficiency Microwave Absorbents From Infinite Design Space

微波食品加热 材料科学 吞吐量 计算机科学 带宽(计算) 工艺工程 机器学习 电信 工程类 无线
作者
Renchao Che,Zhengchen Wu,Bin Quan,Ruixuan Zhang,Huiran Zhang,Jincang Zhang,Wencong Lu
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:33 (50) 被引量:12
标识
DOI:10.1002/adfm.202303108
摘要

Abstract Intrinsic composition properties and extrinsic micro‐/nano‐structural effects constitute the infinite design space of microwave absorption (MA) materials wherein the high‐efficiency performance is expected to advance stealth and anti‐interference technologies. However, restricted to the black box of physical mechanisms, discovering those materials too often relies on the traditional trial‐and‐error methods, falling into the time‐consuming loop between material modification and performance measurement. Herein, an unprecedented machine learning‐based forecasting system (MLFS) is constructed to directly predict the process conditions of carbonyl iron/ferrosoferric oxide hybrids with enhanced MA performance. The high‐throughput screening and inverse projection based on pattern recognition recommend a series of excellent MA materials with the highest performance correlation coefficient up to 0.9844. After manual selection from this set, the enhancement of maximum absorption efficiency and bandwidth of the optimal hybrid reach 207% and 360% in comparison with the original database. The standardized MLFS procedure immensely shortens the research cycle to a few weeks compared to several months of the manual orthogonal experiment. This is believed to be an expressway for accelerating the discovery of high‐performance MA materials and their industrialization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
大模型应助hhzz采纳,获得10
2秒前
一只智慧喵完成签到,获得积分10
2秒前
科目三应助Fundamental采纳,获得10
3秒前
3秒前
miumiuka发布了新的文献求助10
4秒前
greenPASS666发布了新的文献求助10
5秒前
xuanxuan发布了新的文献求助10
5秒前
zfy发布了新的文献求助10
7秒前
7秒前
7秒前
Maor完成签到,获得积分10
7秒前
白菜发布了新的文献求助10
8秒前
8秒前
9秒前
妮妮完成签到 ,获得积分10
11秒前
11秒前
傲娇的凡旋应助spurs17采纳,获得10
11秒前
长情若魔完成签到,获得积分10
13秒前
XM完成签到,获得积分10
13秒前
13秒前
LQW发布了新的文献求助30
13秒前
大个应助Rrr采纳,获得10
13秒前
14秒前
15秒前
15秒前
17秒前
zfy完成签到,获得积分10
17秒前
18秒前
19秒前
19秒前
19秒前
w17638619025完成签到 ,获得积分20
20秒前
撒上咖啡应助科研通管家采纳,获得10
20秒前
顾矜应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
慕青应助科研通管家采纳,获得10
21秒前
菠萝吹雪应助科研通管家采纳,获得30
21秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808