亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Information Recycling Assisted Collaborative Edge Computing for Distributed Learning

重传 计算机科学 分布式计算 GSM演进的增强数据速率 边缘计算 计算 方案(数学) 传输(电信) 吞吐量 边缘设备 人工智能 无线 算法 云计算 电信 数学分析 数学 操作系统
作者
Wenxin Liang,Tianheng Li,Xiaofan He
标识
DOI:10.1109/infocomwkshps57453.2023.10226033
摘要

The ever-increasing scale and complexity of artificial intelligent services have ignited the recent research interests in distributed edge learning. For better communication rate and spectral efficiency, non-orthogonal transmissions are often adopted for distributed edge learning. On the other hand, the computation rate of distributed edge earning is sometimes hampered by a few straggling edge nodes (ENs) and existing countermeasures either introduce redundant computation or require extra data retransmission. To the best of our knowledge, developing a new edge computing scheme for distributed learning that can handle EN straggling without these extra costs still remains open. Fortunately, it is found in this work that this computation issue can be addressed jointly with the communication issue by integrating a novel information recycling mechanism into existing non-orthogonal transmission techniques. In particular, an information recycling assisted collaborative edge computing scheme is proposed in this work for distributed learning, which allows each EN to recycle part of the task information intended for other ENs for free, by exploiting the successive interference cancellation (SIC) procedure in non-orthogonal transmission. In this way, faster ENs can help execute part of the workload of the straggling ENs without redundant computation and data retransmission. Besides, to optimize the corresponding total throughput of the distributed edge learning system, a joint power control and rate splitting algorithm is developed. Simulations are conducted to corroborate the effectiveness of the proposed scheme.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
5秒前
桐桐应助喝可乐也很好采纳,获得20
8秒前
君兰完成签到,获得积分10
9秒前
10秒前
12秒前
slby完成签到 ,获得积分10
13秒前
君兰发布了新的文献求助10
15秒前
友好碧完成签到 ,获得积分10
17秒前
乐观的月亮完成签到,获得积分10
22秒前
22秒前
zhuxiaoyue发布了新的文献求助10
22秒前
打打应助辉辉采纳,获得10
22秒前
美美完成签到,获得积分20
24秒前
27秒前
29秒前
31秒前
BeanHahn发布了新的文献求助10
31秒前
32秒前
阿离完成签到,获得积分10
33秒前
35秒前
无题完成签到,获得积分10
35秒前
辉辉发布了新的文献求助10
36秒前
38秒前
39秒前
41秒前
科研通AI6应助科研通管家采纳,获得10
42秒前
小蘑菇应助科研通管家采纳,获得10
42秒前
43秒前
44秒前
chenyue233完成签到,获得积分10
44秒前
specium发布了新的文献求助10
46秒前
chenyue233发布了新的文献求助10
50秒前
大个应助ECD采纳,获得10
51秒前
52秒前
57秒前
BeanHahn完成签到,获得积分10
1分钟前
_u_ii发布了新的文献求助10
1分钟前
辉辉完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714225
求助须知:如何正确求助?哪些是违规求助? 5221821
关于积分的说明 15272955
捐赠科研通 4865714
什么是DOI,文献DOI怎么找? 2612313
邀请新用户注册赠送积分活动 1562449
关于科研通互助平台的介绍 1519671