Development and validation of an artificial intelligence prediction model and a survival risk stratification for lung metastasis in colorectal cancer from highly imbalanced data: A multicenter retrospective study

特征选择 随机森林 单变量 接收机工作特性 决策树 结直肠癌 人工智能 医学 逻辑回归 支持向量机 机器学习 多元统计 肿瘤科 预测建模 内科学 计算机科学 癌症
作者
Weiyuan Zhang,Xu Guan,Shuai Jiao,Guiyu Wang,Xishan Wang
出处
期刊:Ejso [Elsevier BV]
卷期号:49 (12): 107107-107107 被引量:5
标识
DOI:10.1016/j.ejso.2023.107107
摘要

Background To assist clinicians with diagnosis and optimal treatment decision-making, we attempted to develop and validate an artificial intelligence prediction model for lung metastasis (LM) in colorectal cancer (CRC) patients. Methods The clinicopathological characteristics of 46037 CRC patients from the Surveillance, Epidemiology, and End Results (SEER) database and 2779 CRC patients from a multi-center external validation set were collected retrospectively. After feature selection by univariate and multivariate analyses, six machine learning (ML) models, including logistic regression, K-nearest neighbor, support vector machine, decision tree, random forest, and balanced random forest (BRF), were developed and validated for the LM prediction. In addition, stratified LM patients by risk score were utilized for survival analysis. Results Extremely low rates of LM with 2.59% and 4.50% were present in the development and validation set. As the imbalanced learning strategy, the BRF model with an Area under the receiver operating characteristic curve (AUC) of 0.874 and an average precision (AP) of 0.184 performed best compares with other models and clinical predictor. Patients with LM in the high-risk group had significantly poorer survival (P<0.001) and failed to benefit from resection (P = 0.125). Conclusions In summary, we have utilized the BRF algorithm to develop an effective, non-invasive, and practical model for predicting LM in CRC patients based on highly imbalanced datasets. In addition, we have implemented a novel approach to stratify the survival risk of CRC patients with LM based the output of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
JamesPei应助淘宝叮咚采纳,获得10
刚刚
小马甲应助淘宝叮咚采纳,获得10
刚刚
2秒前
2秒前
2秒前
yn完成签到,获得积分10
3秒前
3秒前
不安青牛应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
阔达紫青应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
不安青牛应助科研通管家采纳,获得10
4秒前
4秒前
Lucas应助科研通管家采纳,获得10
5秒前
聪慧小霜应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得30
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
Hui完成签到,获得积分10
5秒前
852应助科研通管家采纳,获得10
5秒前
wy.he应助科研通管家采纳,获得20
6秒前
wanci应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
鸣笛应助科研通管家采纳,获得20
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
不安青牛应助科研通管家采纳,获得10
6秒前
不安青牛应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
爱笑的小羽毛完成签到,获得积分20
7秒前
无花果应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
华仔应助en采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Ride comfort analysis of hydro-pneumatic suspension considering variable damping matched with dynamitic load 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4589872
求助须知:如何正确求助?哪些是违规求助? 4004895
关于积分的说明 12399651
捐赠科研通 3681863
什么是DOI,文献DOI怎么找? 2029343
邀请新用户注册赠送积分活动 1062883
科研通“疑难数据库(出版商)”最低求助积分说明 948536