Development and validation of an artificial intelligence prediction model and a survival risk stratification for lung metastasis in colorectal cancer from highly imbalanced data: A multicenter retrospective study

特征选择 随机森林 单变量 接收机工作特性 决策树 结直肠癌 人工智能 医学 逻辑回归 支持向量机 机器学习 多元统计 肿瘤科 预测建模 内科学 计算机科学 癌症
作者
Weiyuan Zhang,Xu Guan,Shuai Jiao,Guiyu Wang,Xishan Wang
出处
期刊:Ejso [Elsevier]
卷期号:49 (12): 107107-107107
标识
DOI:10.1016/j.ejso.2023.107107
摘要

Background To assist clinicians with diagnosis and optimal treatment decision-making, we attempted to develop and validate an artificial intelligence prediction model for lung metastasis (LM) in colorectal cancer (CRC) patients. Methods The clinicopathological characteristics of 46037 CRC patients from the Surveillance, Epidemiology, and End Results (SEER) database and 2779 CRC patients from a multi-center external validation set were collected retrospectively. After feature selection by univariate and multivariate analyses, six machine learning (ML) models, including logistic regression, K-nearest neighbor, support vector machine, decision tree, random forest, and balanced random forest (BRF), were developed and validated for the LM prediction. In addition, stratified LM patients by risk score were utilized for survival analysis. Results Extremely low rates of LM with 2.59% and 4.50% were present in the development and validation set. As the imbalanced learning strategy, the BRF model with an Area under the receiver operating characteristic curve (AUC) of 0.874 and an average precision (AP) of 0.184 performed best compares with other models and clinical predictor. Patients with LM in the high-risk group had significantly poorer survival (P<0.001) and failed to benefit from resection (P = 0.125). Conclusions In summary, we have utilized the BRF algorithm to develop an effective, non-invasive, and practical model for predicting LM in CRC patients based on highly imbalanced datasets. In addition, we have implemented a novel approach to stratify the survival risk of CRC patients with LM based the output of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kun完成签到,获得积分10
1秒前
明天见完成签到,获得积分10
1秒前
2秒前
7777777完成签到,获得积分10
2秒前
3秒前
华仔应助SuperGG采纳,获得10
4秒前
Chestnut发布了新的文献求助10
5秒前
单纯夏烟完成签到,获得积分10
5秒前
WKY完成签到,获得积分10
6秒前
wss发布了新的文献求助10
7秒前
学术小白发布了新的文献求助10
7秒前
SciGPT应助能干的杨柿子采纳,获得10
10秒前
10秒前
Eden发布了新的文献求助10
11秒前
小熊猫发布了新的文献求助10
15秒前
15秒前
破伤疯完成签到 ,获得积分10
16秒前
ding应助跋扈采纳,获得10
16秒前
16秒前
17秒前
小吴完成签到,获得积分10
18秒前
卜东完成签到,获得积分10
20秒前
20秒前
20秒前
田様应助危机的乐双采纳,获得10
21秒前
22秒前
科研通AI2S应助wss采纳,获得10
22秒前
别摘小红花完成签到,获得积分20
23秒前
zzz完成签到,获得积分10
23秒前
啦啦啦发布了新的文献求助10
23秒前
美好斓发布了新的文献求助30
24秒前
奔跑发布了新的文献求助10
24秒前
爱静静应助ai豆的鱼采纳,获得10
24秒前
rong发布了新的文献求助10
27秒前
27秒前
wanci应助Eileen采纳,获得10
28秒前
29秒前
淡然鸡翅完成签到,获得积分10
29秒前
充电宝应助别摘小红花采纳,获得10
30秒前
32秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149477
求助须知:如何正确求助?哪些是违规求助? 2800533
关于积分的说明 7840390
捐赠科研通 2458038
什么是DOI,文献DOI怎么找? 1308241
科研通“疑难数据库(出版商)”最低求助积分说明 628460
版权声明 601706