Development and validation of an artificial intelligence prediction model and a survival risk stratification for lung metastasis in colorectal cancer from highly imbalanced data: A multicenter retrospective study

特征选择 随机森林 单变量 接收机工作特性 决策树 结直肠癌 人工智能 医学 逻辑回归 支持向量机 机器学习 多元统计 肿瘤科 预测建模 内科学 计算机科学 癌症
作者
Weiyuan Zhang,Xu Guan,Shuai Jiao,Guiyu Wang,Xishan Wang
出处
期刊:Ejso [Elsevier BV]
卷期号:49 (12): 107107-107107
标识
DOI:10.1016/j.ejso.2023.107107
摘要

Background To assist clinicians with diagnosis and optimal treatment decision-making, we attempted to develop and validate an artificial intelligence prediction model for lung metastasis (LM) in colorectal cancer (CRC) patients. Methods The clinicopathological characteristics of 46037 CRC patients from the Surveillance, Epidemiology, and End Results (SEER) database and 2779 CRC patients from a multi-center external validation set were collected retrospectively. After feature selection by univariate and multivariate analyses, six machine learning (ML) models, including logistic regression, K-nearest neighbor, support vector machine, decision tree, random forest, and balanced random forest (BRF), were developed and validated for the LM prediction. In addition, stratified LM patients by risk score were utilized for survival analysis. Results Extremely low rates of LM with 2.59% and 4.50% were present in the development and validation set. As the imbalanced learning strategy, the BRF model with an Area under the receiver operating characteristic curve (AUC) of 0.874 and an average precision (AP) of 0.184 performed best compares with other models and clinical predictor. Patients with LM in the high-risk group had significantly poorer survival (P<0.001) and failed to benefit from resection (P = 0.125). Conclusions In summary, we have utilized the BRF algorithm to develop an effective, non-invasive, and practical model for predicting LM in CRC patients based on highly imbalanced datasets. In addition, we have implemented a novel approach to stratify the survival risk of CRC patients with LM based the output of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术小白完成签到,获得积分10
1秒前
眯眯眼的衬衫应助江屿采纳,获得10
1秒前
千寻完成签到,获得积分10
1秒前
CNS完成签到,获得积分10
3秒前
Ting完成签到,获得积分10
3秒前
3秒前
伍寒烟完成签到,获得积分10
3秒前
CIOOICO1发布了新的文献求助10
4秒前
小猴儿发布了新的文献求助10
4秒前
5秒前
5秒前
经冰夏完成签到,获得积分10
5秒前
5秒前
6秒前
7秒前
7秒前
流北爷完成签到,获得积分10
7秒前
岁岁菌完成签到,获得积分10
7秒前
赘婿应助王小冉采纳,获得10
8秒前
王小小发布了新的文献求助10
8秒前
扎心应助温婉采纳,获得10
9秒前
Lucas应助肖2采纳,获得10
9秒前
现代绮玉完成签到,获得积分10
9秒前
9秒前
123发布了新的文献求助10
9秒前
lll发布了新的文献求助10
9秒前
奋斗含巧发布了新的文献求助10
9秒前
在水一方应助谨慎大白采纳,获得10
9秒前
发光的萤火虫完成签到,获得积分0
9秒前
9秒前
贪玩路灯完成签到,获得积分10
9秒前
悦耳的真完成签到,获得积分10
10秒前
彭于晏应助sketch采纳,获得10
10秒前
风车完成签到,获得积分10
11秒前
11秒前
神揽星辰入梦完成签到,获得积分10
11秒前
方圆学术完成签到,获得积分10
11秒前
Rick发布了新的文献求助10
11秒前
远方发布了新的文献求助30
12秒前
闹闹发布了新的文献求助10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953650
求助须知:如何正确求助?哪些是违规求助? 3499409
关于积分的说明 11095552
捐赠科研通 3229987
什么是DOI,文献DOI怎么找? 1785841
邀请新用户注册赠送积分活动 869592
科研通“疑难数据库(出版商)”最低求助积分说明 801479