Tuning and Balancing the Donor Number of Lithium Salts and Solvents for High-Performance Li Metal Anode

溶剂化 电解质 溶解度 离解(化学) 溶剂 法拉第效率 电导率 化学 无机化学 阳极 锂(药物) 金属 化学工程 材料科学 有机化学 物理化学 电极 工程类 医学 内分泌学
作者
Pan Zhou,Wenhui Hou,Yingchun Xia,Yu Ou,Hang-Yu Zhou,Weili Zhang,Yang Lu,Xuan Song,Fengxiang Liu,Qingbin Cao,Hao Liu,Shuaishuai Yan,Kai Liu
出处
期刊:ACS Nano [American Chemical Society]
卷期号:17 (17): 17169-17179 被引量:14
标识
DOI:10.1021/acsnano.3c05016
摘要

The low reversibility of Li deposition/stripping in conventional carbonate electrolytes hinders the development of lithium metal batteries. Herein, we proposed a combination of solvents with a moderate donor number (DN) and LiNO3 as the sole salt, which has rarely been attempted due to its low solubility or dissociation degree in common solvents. It is found that the DN value of solvents is highly correlated to the reversibility of Li deposition behavior when LiNO3 is applied as the sole salt. The combination of LiNO3 and solvents with moderate DN behaves like a quasi-concentrated electrolyte even at a common or moderate concentration, while neither the solvents with poor solubility and low dissociation for LiNO3 (which usually corresponds to a low DN) nor the solvents with high dissociation for LiNO3 (which usually corresponds to an overly high DN) can achieve a high reversibility for low conductivity or excessive solvent decomposition. As a result, a Coulombic efficiency as high as 99.6% for Li deposition/stripping is achieved with the optimized combination. We believe this work will give a better understanding of the role of anions and solvents in the regulation of the solvation structure, and DN can be utilized as an important guideline to sieve suitable solvents for LiNO3 as the main salt to exhibit intriguing properties beyond traditional cognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助通~采纳,获得10
刚刚
Percy完成签到 ,获得积分10
刚刚
xiuxiu_27发布了新的文献求助10
1秒前
顾矜应助千里采纳,获得10
1秒前
神勇的雅香应助妮儿采纳,获得10
1秒前
qi完成签到,获得积分10
2秒前
哒哒发布了新的文献求助10
2秒前
知行完成签到,获得积分10
2秒前
2秒前
3秒前
Yenom发布了新的文献求助10
3秒前
4秒前
滴滴发布了新的文献求助10
5秒前
心灵美发卡完成签到,获得积分10
5秒前
科目三应助浩浩大人采纳,获得10
6秒前
考虑考虑完成签到,获得积分10
6秒前
彪壮的刺猬完成签到,获得积分10
7秒前
杏花饼完成签到,获得积分10
7秒前
Ll发布了新的文献求助10
7秒前
7秒前
汉堡包应助啊娴仔采纳,获得10
8秒前
8秒前
珂伟完成签到,获得积分10
8秒前
鲜艳的帅哥完成签到,获得积分10
9秒前
wkjsdsg完成签到,获得积分10
9秒前
大七完成签到 ,获得积分10
9秒前
9秒前
jogrgr发布了新的文献求助10
10秒前
lll发布了新的文献求助10
11秒前
生气的鸡蛋完成签到,获得积分10
11秒前
qi发布了新的文献求助10
11秒前
zino发布了新的文献求助10
12秒前
12秒前
12秒前
stt发布了新的文献求助10
13秒前
小蘑菇应助杏花饼采纳,获得10
13秒前
海棠yiyi发布了新的文献求助50
13秒前
camellia完成签到 ,获得积分10
14秒前
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759