A bibliometric analysis on the application of deep learning in finance: status, development and future directions

计算机科学 数据科学 范围(计算机科学) 引用 领域(数学) 管理科学 文件夹 引文分析 运筹学 财务 经济 图书馆学 数学 纯数学 工程类 程序设计语言
作者
Manogna R.L.,A.. Anand
出处
期刊:Kybernetes [Emerald (MCB UP)]
被引量:15
标识
DOI:10.1108/k-04-2023-0637
摘要

Purpose Deep learning (DL) is a new and relatively unexplored field that finds immense applications in many industries, especially ones that must make detailed observations, inferences and predictions based on extensive and scattered datasets. The purpose of this paper is to answer the following questions: (1) To what extent has DL penetrated the research being done in finance? (2) What areas of financial research have applications of DL, and what quality of work has been done in the niches? (3) What areas still need to be explored and have scope for future research? Design/methodology/approach This paper employs bibliometric analysis, a potent yet simple methodology with numerous applications in literature reviews. This paper focuses on citation analysis, author impacts, relevant and vital journals, co-citation analysis, bibliometric coupling and co-occurrence analysis. The authors collected 693 articles published in 2000–2022 from journals indexed in the Scopus database. Multiple software (VOSviewer, RStudio (biblioshiny) and Excel) were employed to analyze the data. Findings The findings reveal significant and renowned authors' impact in the field. The analysis indicated that the application of DL in finance has been on an upward track since 2017. The authors find four broad research areas (neural networks and stock market simulations; portfolio optimization and risk management; time series analysis and forecasting; high-frequency trading) with different degrees of intertwining and emerging research topics with the application of DL in finance. This article contributes to the literature by providing a systematic overview of the DL developments, trajectories, objectives and potential future research topics in finance. Research limitations/implications The findings of this paper act as a guide for literature review for anyone interested in doing research in the intersection of finance and DL. The article also explores multiple areas of research that have yet to be studied to a great extent and have abundant scope. Originality/value Very few studies have explored the applications of machine learning (ML), namely, DL in finance, which is a much more specialized subset of ML. The authors look at the problem from the aspect of different techniques in DL that have been used in finance. This is the first qualitative (content analysis) and quantitative (bibliometric analysis) assessment of current research on DL in finance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷酷的蜻蜓完成签到,获得积分10
刚刚
刚刚
小浆果发布了新的文献求助10
1秒前
1秒前
1秒前
在水一方应助科研小蛀虫采纳,获得10
1秒前
街上的狗完成签到,获得积分0
2秒前
2秒前
maopf发布了新的文献求助30
3秒前
3秒前
鲜于灵竹完成签到,获得积分10
3秒前
nie发布了新的文献求助30
3秒前
3秒前
mengdewen发布了新的文献求助10
3秒前
詹军发布了新的文献求助10
3秒前
1234567完成签到,获得积分10
3秒前
wwwwyt发布了新的文献求助20
4秒前
4秒前
FashionBoy应助李振聪采纳,获得10
4秒前
酷炫的乐荷完成签到,获得积分10
4秒前
灵梦柠檬酸完成签到,获得积分10
5秒前
5秒前
6秒前
含糊的鞋子完成签到,获得积分20
6秒前
TianY天翊发布了新的文献求助10
7秒前
大胆夜山发布了新的文献求助30
7秒前
LLRO完成签到,获得积分10
7秒前
打打应助贪玩的天荷采纳,获得10
8秒前
zyyyyyyyy完成签到 ,获得积分10
8秒前
8秒前
nnnnnnnnn发布了新的文献求助10
8秒前
8秒前
野性的柠檬完成签到,获得积分20
9秒前
杨小谦完成签到,获得积分10
9秒前
mimiflying发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5330356
求助须知:如何正确求助?哪些是违规求助? 4469805
关于积分的说明 13910955
捐赠科研通 4363153
什么是DOI,文献DOI怎么找? 2396686
邀请新用户注册赠送积分活动 1390108
关于科研通互助平台的介绍 1360884