A bibliometric analysis on the application of deep learning in finance: status, development and future directions

计算机科学 数据科学 范围(计算机科学) 引用 领域(数学) 管理科学 文件夹 引文分析 运筹学 财务 经济 图书馆学 数学 纯数学 工程类 程序设计语言
作者
Manogna R.L.,A.. Anand
出处
期刊:Kybernetes [Emerald Publishing Limited]
被引量:15
标识
DOI:10.1108/k-04-2023-0637
摘要

Purpose Deep learning (DL) is a new and relatively unexplored field that finds immense applications in many industries, especially ones that must make detailed observations, inferences and predictions based on extensive and scattered datasets. The purpose of this paper is to answer the following questions: (1) To what extent has DL penetrated the research being done in finance? (2) What areas of financial research have applications of DL, and what quality of work has been done in the niches? (3) What areas still need to be explored and have scope for future research? Design/methodology/approach This paper employs bibliometric analysis, a potent yet simple methodology with numerous applications in literature reviews. This paper focuses on citation analysis, author impacts, relevant and vital journals, co-citation analysis, bibliometric coupling and co-occurrence analysis. The authors collected 693 articles published in 2000–2022 from journals indexed in the Scopus database. Multiple software (VOSviewer, RStudio (biblioshiny) and Excel) were employed to analyze the data. Findings The findings reveal significant and renowned authors' impact in the field. The analysis indicated that the application of DL in finance has been on an upward track since 2017. The authors find four broad research areas (neural networks and stock market simulations; portfolio optimization and risk management; time series analysis and forecasting; high-frequency trading) with different degrees of intertwining and emerging research topics with the application of DL in finance. This article contributes to the literature by providing a systematic overview of the DL developments, trajectories, objectives and potential future research topics in finance. Research limitations/implications The findings of this paper act as a guide for literature review for anyone interested in doing research in the intersection of finance and DL. The article also explores multiple areas of research that have yet to be studied to a great extent and have abundant scope. Originality/value Very few studies have explored the applications of machine learning (ML), namely, DL in finance, which is a much more specialized subset of ML. The authors look at the problem from the aspect of different techniques in DL that have been used in finance. This is the first qualitative (content analysis) and quantitative (bibliometric analysis) assessment of current research on DL in finance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪明铸海完成签到,获得积分10
刚刚
枕雪听冷冷完成签到,获得积分20
刚刚
积极晓绿完成签到,获得积分10
1秒前
lovt123完成签到,获得积分10
2秒前
逢考必过完成签到,获得积分10
2秒前
嵇丹雪完成签到,获得积分10
3秒前
Cai发布了新的文献求助10
3秒前
tkx是流氓兔完成签到,获得积分10
3秒前
kuikui1100完成签到,获得积分10
3秒前
李霄阳发布了新的文献求助10
4秒前
4秒前
周问航完成签到,获得积分10
5秒前
6秒前
iDong完成签到 ,获得积分10
7秒前
文献就着酒灵感如泉涌关注了科研通微信公众号
7秒前
CaiBangrong完成签到,获得积分10
8秒前
丰富的浩阑完成签到,获得积分10
8秒前
zcious完成签到,获得积分10
8秒前
小男孩完成签到,获得积分10
8秒前
wangzhen完成签到 ,获得积分0
9秒前
wanghuu发布了新的文献求助10
9秒前
高挑的洋葱完成签到,获得积分10
10秒前
单纯芹菜完成签到,获得积分10
10秒前
吴雪完成签到 ,获得积分10
10秒前
朱科源啊源完成签到 ,获得积分10
11秒前
MiaCong完成签到 ,获得积分10
11秒前
zxy发布了新的文献求助10
11秒前
JinghongLiu完成签到,获得积分10
11秒前
月亮上的猫完成签到,获得积分10
12秒前
huohuo143完成签到,获得积分10
12秒前
xingxing完成签到,获得积分10
12秒前
壮观雁开完成签到,获得积分10
12秒前
胡图图完成签到 ,获得积分10
12秒前
顾矜应助Geist采纳,获得10
12秒前
隐形曼青应助文龙采纳,获得10
13秒前
小吴发布了新的文献求助10
13秒前
yidashi完成签到,获得积分10
13秒前
Jasper应助xixi采纳,获得10
13秒前
13秒前
科研通AI5应助sxpab采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5080063
求助须知:如何正确求助?哪些是违规求助? 4298076
关于积分的说明 13390059
捐赠科研通 4121584
什么是DOI,文献DOI怎么找? 2257188
邀请新用户注册赠送积分活动 1261474
关于科研通互助平台的介绍 1195636