A bibliometric analysis on the application of deep learning in finance: status, development and future directions

计算机科学 数据科学 范围(计算机科学) 引用 领域(数学) 管理科学 文件夹 引文分析 运筹学 财务 经济 图书馆学 数学 工程类 程序设计语言 纯数学
作者
Manogna R.L.,A.. Anand
出处
期刊:Kybernetes [Emerald Publishing Limited]
被引量:15
标识
DOI:10.1108/k-04-2023-0637
摘要

Purpose Deep learning (DL) is a new and relatively unexplored field that finds immense applications in many industries, especially ones that must make detailed observations, inferences and predictions based on extensive and scattered datasets. The purpose of this paper is to answer the following questions: (1) To what extent has DL penetrated the research being done in finance? (2) What areas of financial research have applications of DL, and what quality of work has been done in the niches? (3) What areas still need to be explored and have scope for future research? Design/methodology/approach This paper employs bibliometric analysis, a potent yet simple methodology with numerous applications in literature reviews. This paper focuses on citation analysis, author impacts, relevant and vital journals, co-citation analysis, bibliometric coupling and co-occurrence analysis. The authors collected 693 articles published in 2000–2022 from journals indexed in the Scopus database. Multiple software (VOSviewer, RStudio (biblioshiny) and Excel) were employed to analyze the data. Findings The findings reveal significant and renowned authors' impact in the field. The analysis indicated that the application of DL in finance has been on an upward track since 2017. The authors find four broad research areas (neural networks and stock market simulations; portfolio optimization and risk management; time series analysis and forecasting; high-frequency trading) with different degrees of intertwining and emerging research topics with the application of DL in finance. This article contributes to the literature by providing a systematic overview of the DL developments, trajectories, objectives and potential future research topics in finance. Research limitations/implications The findings of this paper act as a guide for literature review for anyone interested in doing research in the intersection of finance and DL. The article also explores multiple areas of research that have yet to be studied to a great extent and have abundant scope. Originality/value Very few studies have explored the applications of machine learning (ML), namely, DL in finance, which is a much more specialized subset of ML. The authors look at the problem from the aspect of different techniques in DL that have been used in finance. This is the first qualitative (content analysis) and quantitative (bibliometric analysis) assessment of current research on DL in finance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chaoshen完成签到,获得积分10
刚刚
zhangsir发布了新的文献求助10
3秒前
栗子呢呢呢完成签到 ,获得积分10
6秒前
温冰雪应助000采纳,获得10
7秒前
李健应助迷人问兰采纳,获得30
8秒前
8秒前
爆米花发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
善学以致用应助叶子采纳,获得10
12秒前
13秒前
13秒前
SSS完成签到,获得积分10
14秒前
打打应助嗨记得看采纳,获得10
17秒前
AAA111122发布了新的文献求助10
18秒前
19秒前
Alan完成签到 ,获得积分10
20秒前
肖肖恩发布了新的文献求助10
22秒前
医路潜行发布了新的文献求助10
22秒前
CipherSage应助亚李采纳,获得10
22秒前
25秒前
26秒前
xingl完成签到,获得积分10
26秒前
兮尔发布了新的文献求助10
29秒前
小草三心发布了新的文献求助10
29秒前
31秒前
SciGPT应助guochang采纳,获得10
32秒前
32秒前
34秒前
35秒前
35秒前
35秒前
大大方方发布了新的文献求助10
36秒前
37秒前
40秒前
40秒前
40秒前
上官老黑完成签到 ,获得积分10
41秒前
guozizi应助科研通管家采纳,获得200
41秒前
852应助科研通管家采纳,获得10
41秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952555
求助须知:如何正确求助?哪些是违规求助? 3498015
关于积分的说明 11089696
捐赠科研通 3228463
什么是DOI,文献DOI怎么找? 1784978
邀请新用户注册赠送积分活动 869059
科研通“疑难数据库(出版商)”最低求助积分说明 801309