Noninvasive prediction of IDH mutation status in gliomas using preoperative multiparametric MRI radiomics nomogram: A mutlicenter study

列线图 无线电技术 接收机工作特性 流体衰减反转恢复 Lasso(编程语言) 医学 逻辑回归 核医学 磁共振成像 放射科 肿瘤科 内科学 计算机科学 万维网
作者
Jun Lü,Wenjuan Xu,Xian‐Yuan Chen,Tan Wang,Hailiang Li
出处
期刊:Magnetic Resonance Imaging [Elsevier]
卷期号:104: 72-79 被引量:4
标识
DOI:10.1016/j.mri.2023.09.001
摘要

To establish and validate a radiomics nomogram for preoperative prediction of isocitrate dehydrogenase (IDH) mutation status of gliomas in a multicenter setting. 414 gliomas patients were collected (306 from local institution and 108 from TCGA). 851 radiomics features were extracted from contrast-enhanced T1-weighted (CE-T1W) and fluid attenuated inversion recovery (FLAIR) sequence, respectively. The features were refined using least absolute shrinkage and selection operator (LASSO) regression combing 10-fold cross-validation. The optimal radiomics features with age and sex were processed by multivariate logistic regression analysis to construct a prediction model, which was developed in the training dataset and assessed in the test and validation dataset. Receiver operating characteristic (ROC) curve, calibration curve and decision curve analysis were applied in the test and external validation datasets to evaluate the performance of the prediction model. Ten robust radiomics features were selected from the 1702 features (four CE-T1W features and six FLAIR features). A nomogram was plotted to represent the prediction model. The accuracy and AUC of the radiomics nomogram achieved 86.96% and 0.891(0.809–0.947) in the test dataset and 84.26% and 0.881(0.805–0.936) in the external validation dataset (all p < 0.05). The positive predictive value (PPV) and negative predictive value (NPV) were 83.72% and 87.75% in the test dataset and 87.81% and 82.09% in the external validation dataset. IDH genotypes of gliomas can be identified by preoperative multiparametric MRI radiomics nomogram and might be clinically meaningful for treatment strategy and prognosis stratification of gliomas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跳跃的静曼完成签到,获得积分10
刚刚
丰富的不惜完成签到,获得积分10
1秒前
2秒前
wfc完成签到,获得积分10
2秒前
浅梨涡完成签到 ,获得积分10
4秒前
JamesPei应助椰子熟了耶采纳,获得20
5秒前
hanyang965发布了新的文献求助10
5秒前
orixero应助喵呜采纳,获得10
5秒前
5秒前
5秒前
6秒前
en发布了新的文献求助10
6秒前
7秒前
白宝宝北北白应助氕氘氚采纳,获得10
7秒前
8秒前
进取拼搏完成签到,获得积分10
8秒前
hehsk完成签到,获得积分10
8秒前
无限鞅完成签到,获得积分20
8秒前
9秒前
DY完成签到 ,获得积分10
10秒前
郑仕完成签到,获得积分10
10秒前
10秒前
进取拼搏发布了新的文献求助10
11秒前
顺顺发布了新的文献求助10
11秒前
11秒前
在水一方应助涛涛采纳,获得10
11秒前
英姑应助义气的傲松采纳,获得10
12秒前
12秒前
哭泣蛋挞完成签到 ,获得积分10
13秒前
sweetbearm应助通~采纳,获得10
13秒前
田様应助吃饭用大碗采纳,获得10
14秒前
14秒前
15秒前
16秒前
阿斯蒂和琴酒完成签到 ,获得积分10
16秒前
珂珂发布了新的文献求助10
18秒前
18秒前
迟大猫应助我是站长才怪采纳,获得30
18秒前
19秒前
BaekHyun发布了新的文献求助10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808