Noninvasive prediction of IDH mutation status in gliomas using preoperative multiparametric MRI radiomics nomogram: A mutlicenter study

列线图 无线电技术 接收机工作特性 流体衰减反转恢复 Lasso(编程语言) 医学 逻辑回归 核医学 磁共振成像 放射科 肿瘤科 内科学 计算机科学 万维网
作者
Jun Lü,Wenjuan Xu,Xiaocao Chen,Tan Wang,Hailiang Li
出处
期刊:Magnetic Resonance Imaging [Elsevier]
卷期号:104: 72-79 被引量:7
标识
DOI:10.1016/j.mri.2023.09.001
摘要

To establish and validate a radiomics nomogram for preoperative prediction of isocitrate dehydrogenase (IDH) mutation status of gliomas in a multicenter setting. 414 gliomas patients were collected (306 from local institution and 108 from TCGA). 851 radiomics features were extracted from contrast-enhanced T1-weighted (CE-T1W) and fluid attenuated inversion recovery (FLAIR) sequence, respectively. The features were refined using least absolute shrinkage and selection operator (LASSO) regression combing 10-fold cross-validation. The optimal radiomics features with age and sex were processed by multivariate logistic regression analysis to construct a prediction model, which was developed in the training dataset and assessed in the test and validation dataset. Receiver operating characteristic (ROC) curve, calibration curve and decision curve analysis were applied in the test and external validation datasets to evaluate the performance of the prediction model. Ten robust radiomics features were selected from the 1702 features (four CE-T1W features and six FLAIR features). A nomogram was plotted to represent the prediction model. The accuracy and AUC of the radiomics nomogram achieved 86.96% and 0.891(0.809–0.947) in the test dataset and 84.26% and 0.881(0.805–0.936) in the external validation dataset (all p < 0.05). The positive predictive value (PPV) and negative predictive value (NPV) were 83.72% and 87.75% in the test dataset and 87.81% and 82.09% in the external validation dataset. IDH genotypes of gliomas can be identified by preoperative multiparametric MRI radiomics nomogram and might be clinically meaningful for treatment strategy and prognosis stratification of gliomas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助Jayson采纳,获得10
1秒前
充电宝应助热情笑旋采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
晓磊发布了新的文献求助30
5秒前
5秒前
Qwering应助Linyi采纳,获得30
6秒前
6秒前
8秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
小先生发布了新的文献求助10
16秒前
欣喜安蕾完成签到,获得积分10
17秒前
18秒前
贪玩若剑完成签到 ,获得积分10
18秒前
大懒虫发布了新的文献求助10
18秒前
19秒前
在水一方应助追寻的从云采纳,获得10
19秒前
19秒前
萌only发布了新的文献求助10
20秒前
20秒前
21秒前
Singularity应助一只小原采纳,获得10
21秒前
阿斯顿完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
22秒前
zjc发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
24秒前
26秒前
26秒前
27秒前
小白完成签到 ,获得积分10
28秒前
Wind应助林志坚采纳,获得10
28秒前
28秒前
28秒前
小蘑菇应助晴天采纳,获得10
29秒前
30秒前
wadaw关注了科研通微信公众号
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5777833
求助须知:如何正确求助?哪些是违规求助? 5635925
关于积分的说明 15446909
捐赠科研通 4909743
什么是DOI,文献DOI怎么找? 2641858
邀请新用户注册赠送积分活动 1589781
关于科研通互助平台的介绍 1544290