Local–Global Gated Convolutional Neural Network for Hyperspectral Image Classification

计算机科学 卷积神经网络 判别式 模式识别(心理学) 人工智能 卷积(计算机科学) 特征(语言学) 块(置换群论) 水准点(测量) 上下文图像分类 特征提取 高光谱成像 深度学习 图像(数学) 人工神经网络 数学 哲学 语言学 地理 几何学 大地测量学
作者
Wei Fu,Kexin Ding,Xudong Kang,Dong Wang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5 被引量:2
标识
DOI:10.1109/lgrs.2023.3332226
摘要

How to learn the most valuable and useful features in convolutional neural networks (CNNs) is the key for accurate hyperspectral image classification (HSIC). Focused on this issue, we developed a local–global gated CNN (LGG-CNN), in this letter. The core is the simultaneous construction of local and global gated convolution blocks, with the aim to select highly discriminative information and filtering redundant information in hyperspectral images (HSIs). Different from traditional CNN methods treating all spectral–spatial features equally, the gated convolutions help in learning a normalized soft mask to guide the network to focus on valid features and neglect the invalid ones. Here, based on the CNN backbone, multilayer local features are first learned via gated convolutional architecture, which mainly consists of convolution operators and nonlinearly activation functions. At the same time, a global gated block (GGB) is designed to conduct feature serialization-mapping-patching operations, to learn global features from deeper layers with larger receptive fields. As a result, the local/GGBs can dynamically learn discriminative feature selection mechanisms for each channel at each spatial location. Then, the local and global features are fused at both the feature-level and decision-level. In this manner, the effective fusion of features by the multilayer LGG convolution blocks enables spatial interaction across layers, leading to further improvement in classification accuracy. Extensive experiments on three benchmark HSIC datasets demonstrate the superiority of LGG-CNN over some state-of-the-art methods. The source code of the proposed method is available at https://github.com/Ding-Kexin/LGG-CNN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
快帮我找找完成签到,获得积分10
刚刚
苗条的一一完成签到,获得积分10
刚刚
wackykao完成签到 ,获得积分10
1秒前
1秒前
xy完成签到,获得积分10
1秒前
莫妮卡.宾发布了新的文献求助10
1秒前
Hello应助活力的语堂采纳,获得10
1秒前
老朱完成签到,获得积分10
2秒前
3秒前
3秒前
乐乐应助AgAin采纳,获得10
4秒前
Eason_C完成签到 ,获得积分10
4秒前
6秒前
yu完成签到,获得积分10
7秒前
CipherSage应助guozizi采纳,获得10
8秒前
蒋依伶完成签到,获得积分20
8秒前
量子星尘发布了新的文献求助10
9秒前
田様应助平硕采纳,获得10
10秒前
10秒前
热心观众完成签到,获得积分10
13秒前
13秒前
Zoe发布了新的文献求助10
14秒前
含蓄的采枫完成签到,获得积分10
17秒前
董春伟应助科研通管家采纳,获得20
18秒前
隐形曼青应助科研通管家采纳,获得50
18秒前
赘婿应助科研通管家采纳,获得10
18秒前
专注的妍应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
18秒前
一路有你完成签到 ,获得积分10
18秒前
JamesPei应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
XCXC应助科研通管家采纳,获得10
19秒前
19秒前
脑洞疼应助科研通管家采纳,获得20
19秒前
浮游应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911940
求助须知:如何正确求助?哪些是违规求助? 4187232
关于积分的说明 13003449
捐赠科研通 3955200
什么是DOI,文献DOI怎么找? 2168624
邀请新用户注册赠送积分活动 1187094
关于科研通互助平台的介绍 1094340