Local–Global Gated Convolutional Neural Network for Hyperspectral Image Classification

计算机科学 卷积神经网络 判别式 模式识别(心理学) 人工智能 卷积(计算机科学) 特征(语言学) 块(置换群论) 水准点(测量) 上下文图像分类 特征提取 高光谱成像 深度学习 图像(数学) 人工神经网络 数学 哲学 语言学 地理 几何学 大地测量学
作者
Wei Fu,Kexin Ding,Xudong Kang,Dong Wang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5 被引量:2
标识
DOI:10.1109/lgrs.2023.3332226
摘要

How to learn the most valuable and useful features in convolutional neural networks (CNNs) is the key for accurate hyperspectral image classification (HSIC). Focused on this issue, we developed a local–global gated CNN (LGG-CNN), in this letter. The core is the simultaneous construction of local and global gated convolution blocks, with the aim to select highly discriminative information and filtering redundant information in hyperspectral images (HSIs). Different from traditional CNN methods treating all spectral–spatial features equally, the gated convolutions help in learning a normalized soft mask to guide the network to focus on valid features and neglect the invalid ones. Here, based on the CNN backbone, multilayer local features are first learned via gated convolutional architecture, which mainly consists of convolution operators and nonlinearly activation functions. At the same time, a global gated block (GGB) is designed to conduct feature serialization-mapping-patching operations, to learn global features from deeper layers with larger receptive fields. As a result, the local/GGBs can dynamically learn discriminative feature selection mechanisms for each channel at each spatial location. Then, the local and global features are fused at both the feature-level and decision-level. In this manner, the effective fusion of features by the multilayer LGG convolution blocks enables spatial interaction across layers, leading to further improvement in classification accuracy. Extensive experiments on three benchmark HSIC datasets demonstrate the superiority of LGG-CNN over some state-of-the-art methods. The source code of the proposed method is available at https://github.com/Ding-Kexin/LGG-CNN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
3秒前
科研通AI2S应助漱石采纳,获得10
6秒前
7秒前
陈陈完成签到,获得积分10
7秒前
胡凤至发布了新的文献求助10
7秒前
8秒前
Jqq发布了新的文献求助10
10秒前
周老八发布了新的文献求助10
12秒前
缓慢剑通发布了新的文献求助10
13秒前
海阔天空完成签到,获得积分10
13秒前
13秒前
ZTF完成签到,获得积分10
14秒前
GibsonYu发布了新的文献求助10
15秒前
15秒前
Orange应助周老八采纳,获得10
15秒前
16秒前
happyboy2008完成签到 ,获得积分10
18秒前
英姑应助科研通管家采纳,获得10
20秒前
完美世界应助科研通管家采纳,获得10
20秒前
FashionBoy应助科研通管家采纳,获得10
20秒前
曾经念真应助科研通管家采纳,获得10
20秒前
大个应助科研通管家采纳,获得10
20秒前
英姑应助科研通管家采纳,获得10
20秒前
曾经念真应助科研通管家采纳,获得10
20秒前
20秒前
ding应助科研通管家采纳,获得10
21秒前
赘婿应助科研通管家采纳,获得10
21秒前
曾经念真应助科研通管家采纳,获得10
21秒前
曾经念真应助科研通管家采纳,获得10
21秒前
SciGPT应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
华仔应助科研通管家采纳,获得10
21秒前
21秒前
22秒前
Gengar发布了新的文献求助10
22秒前
化作繁星发布了新的文献求助10
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994126
求助须知:如何正确求助?哪些是违规求助? 3534654
关于积分的说明 11266191
捐赠科研通 3274571
什么是DOI,文献DOI怎么找? 1806394
邀请新用户注册赠送积分活动 883273
科研通“疑难数据库(出版商)”最低求助积分说明 809724