A robust multiple Unmanned Aerial Vehicles 3D path planning strategy via improved particle swarm optimization

运动规划 粒子群优化 计算机科学 趋同(经济学) 路径(计算) 数学优化 博弈论 实时计算 模拟 人工智能 算法 数学 机器人 经济 数理经济学 程序设计语言 经济增长
作者
Li Tan,Hongtao Zhang,Jiaqi Shi,Yuzhao Liu,Tianli Yuan
出处
期刊:Computers & Electrical Engineering [Elsevier]
卷期号:111: 108947-108947 被引量:5
标识
DOI:10.1016/j.compeleceng.2023.108947
摘要

Path planning algorithms for Unmanned Aerial Vehicles (UAVs) are essential in various domains, such as search and rescue operations, agriculture, and delivery services. Nonetheless, finding optimal flight paths in complex environments with obstacles remains challenging. This paper proposes a novel path planning algorithm that uses a Nash equilibrium approach based on game theory to strike a balance between the exploitation and exploration capabilities of UAVs. The algorithm is designed in a simulated flight environment with obstacles, utilizing the self-awareness and group awareness coefficients from particle swarm optimization(PSO) as participants in the game theory model. The proposed path planning algorithm significantly improves the navigation of multiple UAVs in complex scenarios with obstacles by achieving a balance between their exploitation and exploration capabilities. Simulation experiments demonstrate that the proposed method surpasses traditional approaches, exhibiting an average improvement of 32.57%, 32.17%, and 29.33% in the algorithm convergence time, average flight distance, and average flight time, respectively. The significance of this research lies in its contribution to advancing UAV path planning algorithms. By integrating game theory and PSO, the proposed method optimizes the exploration and exploitation capabilities of UAVs, leading to improved navigation and resource utilization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lin发布了新的文献求助10
刚刚
aero完成签到 ,获得积分10
2秒前
123号完成签到,获得积分10
4秒前
充电宝应助TT采纳,获得10
6秒前
7秒前
7秒前
英姑应助荒野星辰采纳,获得10
9秒前
9秒前
YHY完成签到,获得积分10
11秒前
科研通AI5应助魏伯安采纳,获得10
11秒前
caoyy发布了新的文献求助10
11秒前
12秒前
13秒前
张喻235532完成签到,获得积分10
14秒前
失眠虔纹发布了新的文献求助10
15秒前
香蕉觅云应助糊涂的小伙采纳,获得10
15秒前
15秒前
sutharsons应助科研通管家采纳,获得200
17秒前
打打应助科研通管家采纳,获得10
17秒前
axin应助科研通管家采纳,获得10
17秒前
丘比特应助科研通管家采纳,获得10
17秒前
小蘑菇应助科研通管家采纳,获得10
17秒前
上官若男应助科研通管家采纳,获得10
17秒前
无花果应助科研通管家采纳,获得10
17秒前
17秒前
李健应助科研通管家采纳,获得10
17秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
Ava应助科研通管家采纳,获得10
17秒前
Hello应助科研通管家采纳,获得10
18秒前
lu应助科研通管家采纳,获得10
18秒前
18秒前
华仔应助科研通管家采纳,获得10
18秒前
研友_MLJldZ发布了新的文献求助10
18秒前
wys完成签到 ,获得积分10
19秒前
20秒前
michaelvin完成签到,获得积分10
20秒前
学术大白完成签到 ,获得积分10
23秒前
23秒前
SYT完成签到,获得积分10
24秒前
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849