Dynamic production bottleneck prediction using a data-driven method in discrete manufacturing system

瓶颈 计算机科学 生产(经济) 数据挖掘 钥匙(锁) 集合(抽象数据类型) 人工智能 计算机安全 宏观经济学 嵌入式系统 经济 程序设计语言
作者
Daoyuan Liu,Yu Guo,Shaohua Huang,Shengbo Wang,Tao Wu
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:58: 102162-102162 被引量:4
标识
DOI:10.1016/j.aei.2023.102162
摘要

In the complex discrete manufacturing system (DMS), the production bottleneck shifts in space as time goes on and constrains operational efficiency. Accurate proactive production bottleneck prediction provides a reliable basis for dynamic production decisions and helps to improve management timeliness and production efficiency. According to the production characteristics of DMS and the relationship between supply and demand, the production bottleneck is given a new quantification. A long and short-term memory network (LSTM) with dual attention mechanism and a dynamic updating method for the source model are proposed to predict production bottlenecks accurately. Firstly, feature and state attention mechanisms are designed to improve the feature extraction and prediction ability of LSTM. Secondly, as the applicability of the prediction model gradually declines over time, sliding time windows and fast Hoeffding concept detection are combined to trigger the update of model parameters. Then a competitive strategy is explored to choose the source model that is the most suitable for the current data distribution in the model library. Model-based transfer learning is adopted to update the source model parameters, making the prediction model highly adaptive. Subsequently, an elimination strategy is set to update the model library to ensure its timeliness. Finally, experiments demonstrate that the proposed method is effective in bottleneck prediction and superior to other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
imchenyin完成签到,获得积分10
刚刚
海绵宝宝完成签到,获得积分10
刚刚
小飞飞发布了新的文献求助10
刚刚
卷卷关注了科研通微信公众号
1秒前
风兮雨完成签到,获得积分10
1秒前
Alen完成签到,获得积分10
1秒前
英俊的铭应助滕擎采纳,获得10
2秒前
温暖砖头完成签到,获得积分10
2秒前
蜜桃乌龙茶完成签到 ,获得积分10
2秒前
2秒前
沉默的白桃完成签到,获得积分10
2秒前
绿洲发布了新的文献求助10
2秒前
科研虫发布了新的文献求助20
3秒前
赘婿应助何小雨采纳,获得10
3秒前
含糊的赛凤完成签到,获得积分20
4秒前
5秒前
寒酥发布了新的文献求助20
5秒前
yukaiyuan关注了科研通微信公众号
5秒前
万能图书馆应助shunshun采纳,获得10
6秒前
7秒前
Amu1uu应助东隅已逝采纳,获得10
7秒前
Hgddhhvv发布了新的文献求助20
7秒前
科目三应助派大星采纳,获得10
8秒前
8秒前
9秒前
DAYDAY完成签到,获得积分10
9秒前
10秒前
Akim应助xuxuxuxu采纳,获得10
10秒前
10秒前
11秒前
12秒前
蒸有妮的发布了新的文献求助10
12秒前
Frankie发布了新的文献求助10
12秒前
大乐发布了新的文献求助10
12秒前
卡卡西应助ting采纳,获得20
13秒前
Youngen发布了新的文献求助10
13秒前
13秒前
SYLH应助坚定的惜海采纳,获得10
13秒前
13秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951920
求助须知:如何正确求助?哪些是违规求助? 3497285
关于积分的说明 11086653
捐赠科研通 3227867
什么是DOI,文献DOI怎么找? 1784535
邀请新用户注册赠送积分活动 868732
科研通“疑难数据库(出版商)”最低求助积分说明 801180