磁共振成像
医学
一致性(知识库)
放射科
切除术
开颅术
翻译(生物学)
深度学习
图像质量
人工智能
核医学
计算机科学
图像(数学)
外科
生物化学
化学
信使核糖核酸
基因
作者
Xuexia Miao,Herbert Chen,Ming Tang,Yi‐Jen Chen
出处
期刊:Neuro-oncology
[Oxford University Press]
日期:2023-09-01
卷期号:25 (Supplement_2): ii100-ii100
被引量:1
标识
DOI:10.1093/neuonc/noad137.335
摘要
Abstract BACKGROUND Magnetic resonance imaging (MRI) is an essential part of assessing the extension of resection after craniotomy, allowing for accurate assessment of the brain. However, the application of MRI within 72 hours after surgery is limited, owing to its high cost, long time duration, and patients’ limited mobility. Besides, MRI excludes people with contraindications, including implantable electronic devices or artificial limbs, in which sceneries computerized tomography (CT) is the only available choice. To overcome these limitations, we investigated the use of a deep learning model for synthesizing post-operative MRI images. MATERIAL AND METHODS We aim to employ Cross-domain Correspondence Learning for Exemplar-based Image Translation Network (CoCosNet), an exemplar-based image translation model to synthesize T1 contrast-enhanced (T1ce) MRI images by combining post-operative T1ce and post-operative CT images. 233 cases were retrospectively collected at Sun Yat-sen University Cancer Center, who underwent complete MRI and CT scans. RESULTS After 200 epochs and a batch size of 10, CoCosNet achieved comparable results compared to other existing models, with objective indicators structural similarity index = 0.75, peak signal-to-noise ratio = 21.68, and mean absolute error = 0.007. Furthermore, assessments of the extent of resection between the true and synthesized T1ce images achieve great consistency. CONCLUSION Our study demonstrates the effectiveness of the CoCosNet deep learning model in synthesizing post-operative MRI images from pre-operative MRI and post-operative CT scans. Our quantitative analysis indicates that the synthesized images have comparable quality to real MRI images and are able to accurately assess the extent of resection. This approach has a promising future by providing a reliable alternative to traditional post-operative MRI.
科研通智能强力驱动
Strongly Powered by AbleSci AI