A spatiotemporally weighted intelligent method for exploring fine-scale distributions of surface dissolved silicate in coastal seas

生物地球化学循环 环境科学 水华 经验正交函数 地表水 比例(比率) 台风 浮游植物 遥感 海洋学 地质学 气候学 环境化学 环境工程 物理 营养物 有机化学 化学 量子力学
作者
Jin Qi,Zhenhong Du,Sensen Wu,Yijun Chen,Yuanyuan Wang
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:886: 163981-163981 被引量:12
标识
DOI:10.1016/j.scitotenv.2023.163981
摘要

The transfer of dissolved silicate (DSi) from land to coastal environments is a crucial part of global biogeochemical cycling. However, the retrieval of coastal DSi distribution is challenging due to the spatiotemporal non-stationarity and nonlinearity of modeling processes and the low resolution of in situ sampling. To explore the coastal DSi changes in a higher spatiotemporal resolution, this study developed a spatiotemporally weighted intelligent method based on a geographically and temporally neural network weighted regression (GTNNWR) model, a Data-Interpolating Empirical Orthogonal Functions (DINEOF) model, and satellite observations. For the first time, the complete surface DSi concentrations of 2182 days at the 500-meter and 1-day resolution in the coastal sea of Zhejiang Province, China, were obtained (Testing R2 = 78.5 %) by using 2901 in situ records with concurrent remote sensing reflectance. The long-term and large-scale distributions of DSi reflected the changes in coastal DSi under the influences of rivers, ocean currents, and biological effects across multiple spatiotemporal scales. Benefiting from the high-resolution modeling, this study found that the surface DSi concentration had at least 2 declines during a diatom bloom process, which can provide crucial signals for the timely monitoring and early warning of diatom blooms and guide the management of eutrophication. It was also indicated that the correlation coefficient between the monthly DSi concentration and the Yangtze River Diluted Water velocities reached -0.462**, quantitatively revealing the significant influence of the terrestrial input. In addition, the daily-scale DSi fluctuations resulting from typhoon transits were finely characterized, which greatly reduces the monitoring cost compared with the field sampling. Therefore, this study developed an effective data-driven-based method to help explore the fine-scale dynamic changes of surface DSi in coastal seas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
2秒前
2秒前
魏伯安发布了新的文献求助10
2秒前
2秒前
zhouleiwang完成签到,获得积分10
3秒前
李爱国应助aiming采纳,获得10
4秒前
无奈傲菡完成签到,获得积分10
5秒前
TT发布了新的文献求助10
5秒前
啦啦啦发布了新的文献求助10
6秒前
sun发布了新的文献求助10
7秒前
荣荣完成签到,获得积分10
7秒前
8秒前
小安完成签到,获得积分10
9秒前
Spencer完成签到 ,获得积分10
9秒前
PengHu完成签到,获得积分10
10秒前
10秒前
12秒前
14秒前
14秒前
14秒前
ywang发布了新的文献求助10
15秒前
失眠虔纹完成签到,获得积分10
15秒前
斯文败类应助nextconnie采纳,获得10
15秒前
药学牛马发布了新的文献求助10
19秒前
19秒前
20秒前
23秒前
张无缺完成签到,获得积分10
26秒前
28秒前
CodeCraft应助MES采纳,获得10
29秒前
笨笨乘风完成签到,获得积分10
30秒前
田様应助axunQAQ采纳,获得10
32秒前
完美秋烟发布了新的文献求助10
32秒前
无花果应助糊涂的小伙采纳,获得10
32秒前
白betty完成签到,获得积分10
32秒前
MQ&FF完成签到,获得积分0
33秒前
啦啦啦完成签到,获得积分10
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849