A spatiotemporally weighted intelligent method for exploring fine-scale distributions of surface dissolved silicate in coastal seas

生物地球化学循环 环境科学 水华 经验正交函数 地表水 比例(比率) 台风 浮游植物 遥感 海洋学 地质学 气候学 环境化学 环境工程 物理 营养物 有机化学 化学 量子力学
作者
Jin Qi,Zhenhong Du,Sensen Wu,Yijun Chen,Yuanyuan Wang
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:886: 163981-163981 被引量:12
标识
DOI:10.1016/j.scitotenv.2023.163981
摘要

The transfer of dissolved silicate (DSi) from land to coastal environments is a crucial part of global biogeochemical cycling. However, the retrieval of coastal DSi distribution is challenging due to the spatiotemporal non-stationarity and nonlinearity of modeling processes and the low resolution of in situ sampling. To explore the coastal DSi changes in a higher spatiotemporal resolution, this study developed a spatiotemporally weighted intelligent method based on a geographically and temporally neural network weighted regression (GTNNWR) model, a Data-Interpolating Empirical Orthogonal Functions (DINEOF) model, and satellite observations. For the first time, the complete surface DSi concentrations of 2182 days at the 500-meter and 1-day resolution in the coastal sea of Zhejiang Province, China, were obtained (Testing R2 = 78.5 %) by using 2901 in situ records with concurrent remote sensing reflectance. The long-term and large-scale distributions of DSi reflected the changes in coastal DSi under the influences of rivers, ocean currents, and biological effects across multiple spatiotemporal scales. Benefiting from the high-resolution modeling, this study found that the surface DSi concentration had at least 2 declines during a diatom bloom process, which can provide crucial signals for the timely monitoring and early warning of diatom blooms and guide the management of eutrophication. It was also indicated that the correlation coefficient between the monthly DSi concentration and the Yangtze River Diluted Water velocities reached -0.462**, quantitatively revealing the significant influence of the terrestrial input. In addition, the daily-scale DSi fluctuations resulting from typhoon transits were finely characterized, which greatly reduces the monitoring cost compared with the field sampling. Therefore, this study developed an effective data-driven-based method to help explore the fine-scale dynamic changes of surface DSi in coastal seas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝天发布了新的文献求助10
1秒前
有趣的银发布了新的文献求助10
1秒前
2秒前
852应助笨笨凡松采纳,获得10
2秒前
3秒前
4秒前
4秒前
CipherSage应助zhuojiu采纳,获得10
6秒前
6秒前
大闲鱼铭一完成签到 ,获得积分10
6秒前
哦哦哦完成签到,获得积分10
7秒前
8秒前
繁荣的从露完成签到,获得积分10
9秒前
10秒前
啊喔完成签到,获得积分20
11秒前
慕青应助jack采纳,获得10
12秒前
13秒前
团子发布了新的文献求助10
14秒前
14秒前
闲之野鹤完成签到,获得积分10
15秒前
健忘向露关注了科研通微信公众号
15秒前
wy.he应助易安采纳,获得10
16秒前
H_完成签到 ,获得积分10
17秒前
Lesley完成签到 ,获得积分10
17秒前
18秒前
18秒前
19秒前
甜甜奇迹发布了新的文献求助10
20秒前
完美世界应助十分喜欢采纳,获得10
20秒前
22秒前
keep完成签到 ,获得积分10
22秒前
科研通AI6应助啊喔采纳,获得10
22秒前
25秒前
27秒前
浮游应助丝竹丛中墨未干采纳,获得10
28秒前
灿灿发布了新的文献求助20
29秒前
Jie完成签到,获得积分10
29秒前
量子星尘发布了新的文献求助10
30秒前
上官若男应助Cyuan采纳,获得10
31秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638086
求助须知:如何正确求助?哪些是违规求助? 4744566
关于积分的说明 15001034
捐赠科研通 4796214
什么是DOI,文献DOI怎么找? 2562406
邀请新用户注册赠送积分活动 1521889
关于科研通互助平台的介绍 1481759