A spatiotemporally weighted intelligent method for exploring fine-scale distributions of surface dissolved silicate in coastal seas

生物地球化学循环 环境科学 水华 经验正交函数 地表水 比例(比率) 台风 浮游植物 遥感 海洋学 地质学 气候学 环境化学 环境工程 物理 营养物 有机化学 化学 量子力学
作者
Jin Qi,Zhenhong Du,Sensen Wu,Yijun Chen,Yuanyuan Wang
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:886: 163981-163981 被引量:12
标识
DOI:10.1016/j.scitotenv.2023.163981
摘要

The transfer of dissolved silicate (DSi) from land to coastal environments is a crucial part of global biogeochemical cycling. However, the retrieval of coastal DSi distribution is challenging due to the spatiotemporal non-stationarity and nonlinearity of modeling processes and the low resolution of in situ sampling. To explore the coastal DSi changes in a higher spatiotemporal resolution, this study developed a spatiotemporally weighted intelligent method based on a geographically and temporally neural network weighted regression (GTNNWR) model, a Data-Interpolating Empirical Orthogonal Functions (DINEOF) model, and satellite observations. For the first time, the complete surface DSi concentrations of 2182 days at the 500-meter and 1-day resolution in the coastal sea of Zhejiang Province, China, were obtained (Testing R2 = 78.5 %) by using 2901 in situ records with concurrent remote sensing reflectance. The long-term and large-scale distributions of DSi reflected the changes in coastal DSi under the influences of rivers, ocean currents, and biological effects across multiple spatiotemporal scales. Benefiting from the high-resolution modeling, this study found that the surface DSi concentration had at least 2 declines during a diatom bloom process, which can provide crucial signals for the timely monitoring and early warning of diatom blooms and guide the management of eutrophication. It was also indicated that the correlation coefficient between the monthly DSi concentration and the Yangtze River Diluted Water velocities reached -0.462**, quantitatively revealing the significant influence of the terrestrial input. In addition, the daily-scale DSi fluctuations resulting from typhoon transits were finely characterized, which greatly reduces the monitoring cost compared with the field sampling. Therefore, this study developed an effective data-driven-based method to help explore the fine-scale dynamic changes of surface DSi in coastal seas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
之只发布了新的文献求助10
刚刚
云阳完成签到,获得积分10
刚刚
Klaust完成签到,获得积分10
刚刚
科研通AI5应助bai采纳,获得30
刚刚
谨慎半凡完成签到,获得积分10
1秒前
宋灵竹发布了新的文献求助10
1秒前
orixero应助三六九采纳,获得10
1秒前
2秒前
无花果应助CCCC采纳,获得10
2秒前
2秒前
2秒前
2秒前
爱听歌的妖丽完成签到,获得积分10
3秒前
斯文败类应助Cymatics采纳,获得10
4秒前
Andy发布了新的文献求助10
4秒前
科研通AI5应助树袋采纳,获得10
5秒前
5秒前
Ava应助优秀醉易采纳,获得10
5秒前
英俊的铭应助健壮的面包采纳,获得10
5秒前
5秒前
王小姐不吃药完成签到 ,获得积分10
6秒前
自渡完成签到,获得积分10
6秒前
202200362009完成签到,获得积分20
6秒前
6秒前
7秒前
小二郎应助能干雁凡采纳,获得10
8秒前
8秒前
xyy102发布了新的文献求助30
9秒前
9秒前
张小小明发布了新的文献求助10
9秒前
自渡发布了新的文献求助10
9秒前
9秒前
英姑应助marmota采纳,获得10
10秒前
yu发布了新的文献求助10
11秒前
情怀应助aaa采纳,获得10
11秒前
petrel发布了新的文献求助10
11秒前
12秒前
12秒前
在水一方应助啦啦啦采纳,获得10
13秒前
fasha发布了新的文献求助10
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3747956
求助须知:如何正确求助?哪些是违规求助? 3290798
关于积分的说明 10070954
捐赠科研通 3006696
什么是DOI,文献DOI怎么找? 1651241
邀请新用户注册赠送积分活动 786287
科研通“疑难数据库(出版商)”最低求助积分说明 751627