石墨烯
电解质
材料科学
电化学
复合数
离子电导率
化学工程
电池(电)
锂(药物)
锂电池
电导率
快离子导体
纳米技术
离子键合
复合材料
离子
电极
化学
有机化学
物理化学
功率(物理)
内分泌学
工程类
物理
医学
量子力学
作者
Xinghua Liang,Dongxue Huang,Linxiao Lan,Guanhua Yang,Jing‐Mei Huang
出处
期刊:Nanomaterials
[MDPI AG]
日期:2022-09-16
卷期号:12 (18): 3216-3216
摘要
With high safety and good flexibility, polymer-based composite solid electrolytes are considered to be promising electrolytes and are widely investigated in solid lithium batteries. However, the low conductivity and high interfacial impedance of polymer-based solid electrolytes hinder their industrial applications. Herein, a composite solid-state electrolyte containing graphene (PVDF-LATP-LiClO4-Graphene) with structurally stable and good electrochemical performance is explored and enables excellent electrochemical properties for lithium-ion batteries. The ionic conductivity of the composite electrolyte membrane containing 5 wt% graphene reaches 2.00 × 10-3 S cm-1 at 25 °C, which is higher than that of the composite electrolyte membrane without graphene (2.67 × 10-4 S cm-1). The electrochemical window of the composite electrolyte membrane containing 5 wt% graphene reaches 4.6 V, and its Li+ transference numbers reach 0.84. Assembling this electrolyte into the battery, the LFP/PVDF-LATP-LiClO4-Graphene /Li battery has a specific discharge capacity of 107 mAh g-1 at 0.2 C, and the capacity retention rate was 91.58% after 100 cycles, higher than that of the LiFePO4/PVDF-LATP-LiClO4/Li (LFP/PLL/Li) battery, being 94 mAh g-1 and 89.36%, respectively. This work provides a feasible solution for the potential application of composite solid electrolytes.
科研通智能强力驱动
Strongly Powered by AbleSci AI