已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Residual-Aided End-to-End Learning of Communication System without Known Channel

过度拟合 计算机科学 残余物 端到端原则 人工智能 频道(广播) 深度学习 块(置换群论) 通信系统 反向传播 机器学习 人工神经网络 算法 计算机网络 数学 几何学
作者
Hao Jiang,Shuangkaisheng Bi,Linglong Dai,Hao Wang,Jiankun Zhang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2102.10786
摘要

Leveraging powerful deep learning techniques, the end-to-end (E2E) learning of communication system is able to outperform the classical communication system. Unfortunately, this communication system cannot be trained by deep learning without known channel. To deal with this problem, a generative adversarial network (GAN) based training scheme has been recently proposed to imitate the real channel. However, the gradient vanishing and overfitting problems of GAN will result in the serious performance degradation of E2E learning of communication system. To mitigate these two problems, we propose a residual aided GAN (RA-GAN) based training scheme in this paper. Particularly, inspired by the idea of residual learning, we propose a residual generator to mitigate the gradient vanishing problem by realizing a more robust gradient backpropagation. Moreover, to cope with the overfitting problem, we reconstruct the loss function for training by adding a regularizer, which limits the representation ability of RA-GAN. Simulation results show that the trained residual generator has better generation performance than the conventional generator, and the proposed RA-GAN based training scheme can achieve the near-optimal block error rate (BLER) performance with a negligible computational complexity increase in both the theoretical channel model and the ray-tracing based channel dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
求子得子关注了科研通微信公众号
2秒前
顺心初蓝发布了新的文献求助10
2秒前
8秒前
9秒前
9秒前
坚守初心完成签到,获得积分10
11秒前
12秒前
guoguo82发布了新的文献求助10
12秒前
禾沐发布了新的文献求助10
12秒前
熙熙完成签到,获得积分10
12秒前
ff完成签到 ,获得积分10
13秒前
13秒前
于水清发布了新的文献求助10
17秒前
我爆冲关注了科研通微信公众号
19秒前
敏er好学发布了新的文献求助10
19秒前
zhangzhang发布了新的文献求助10
20秒前
20秒前
21秒前
fancy完成签到 ,获得积分10
22秒前
春江发布了新的文献求助30
24秒前
26秒前
纸上浅发布了新的文献求助10
26秒前
27秒前
1z6完成签到 ,获得积分10
27秒前
29秒前
马倩茹发布了新的文献求助10
33秒前
34秒前
35秒前
1z6关注了科研通微信公众号
38秒前
38秒前
我爆冲发布了新的文献求助10
39秒前
迅速猕猴桃完成签到,获得积分10
39秒前
卓越完成签到,获得积分10
40秒前
可爱的函函应助马倩茹采纳,获得10
40秒前
40秒前
42秒前
42秒前
研友_VZG7GZ应助zhangzhang采纳,获得10
43秒前
乌冬面发布了新的文献求助30
43秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3724981
求助须知:如何正确求助?哪些是违规求助? 3270199
关于积分的说明 9964627
捐赠科研通 2985023
什么是DOI,文献DOI怎么找? 1637769
邀请新用户注册赠送积分活动 777716
科研通“疑难数据库(出版商)”最低求助积分说明 747128