Prediction of Antiviral peptides using transform evolutionary & SHAP analysis based descriptors by incorporation with ensemble learning strategy

阿达布思 人工智能 计算机科学 机器学习 判别式 支持向量机 分类器(UML) 模式识别(心理学) 集成学习 特征(语言学) 语言学 哲学
作者
Shahid Akbar,Farman Ali,Maqsood Hayat,Ashfaq Ahmad,Salman Khan,Sarah Gul
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier]
卷期号:230: 104682-104682 被引量:12
标识
DOI:10.1016/j.chemolab.2022.104682
摘要

Viral diseases are a major health concern in the last few years. Antiviral peptides (AVPs) belong to a type of antimicrobial peptides (AMPs) that have the high potential to defend the human body from various viral diseases. Despite the large production of antiviral vaccination and drugs, viral infections are still a prominent human disease. The discovery of AVPs as an antiviral agent offers an effective way to treat virus-affected cells. Recently, the development of peptide-based therapeutic agents via machine learning methods is becoming a major area of interest due to its promising results. In this paper, we developed an intelligent and computationally efficient learning approach for the reliable identification of AVPs. The novel evolutionary descriptors are explored via embedding discrete wavelet transform and k-segmentation approaches into the position-specific scoring matrix. Moreover, the Shapley Additive exPlanations (SHAP) based global interpretation analysis is employed to choose optimal features by measuring the contributions of each feature in the extracted vectors. In the next phase, the selected feature spaces are examined using five different classifiers, such as XGBoost (XGB), k-nearest neighbor (KNN), Extra Trees classifier (ETC), Support Vector Machine (SVM), and Adaboost (ADA). Furthermore, to boost the discriminative power of the proposed model, the predicted labels of all classifiers are given to the optimized genetic algorithm to build an ensemble learner. Hence, our proposed study reported a higher classification rate of 97.33% and 95.57% via training samples and independent samples, respectively. Which is ∼5% improved accuracy than available predictors. It is recommended that our model will be a helpful approach for the researchers and may perform a significant role in research academia and drug development. The source code and all datasets are publicly available at https://github.com/wangphd0/pAVP_PSSMDWT-EnC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
haha发布了新的文献求助30
2秒前
sa完成签到,获得积分10
2秒前
粗暴的遥发布了新的文献求助10
3秒前
背后橘子完成签到 ,获得积分10
4秒前
6秒前
小瑞儿完成签到 ,获得积分10
6秒前
8秒前
李爱国应助小吴同志采纳,获得10
11秒前
薰硝壤应助失眠的血茗采纳,获得10
11秒前
不配.应助小吴同志采纳,获得10
11秒前
嘉博学长发布了新的文献求助10
12秒前
如意的乐天应助李燕君采纳,获得10
12秒前
15秒前
科研通AI2S应助lzc采纳,获得10
16秒前
18秒前
包子牛奶发布了新的文献求助10
24秒前
kkkkkk发布了新的文献求助10
30秒前
何博洋完成签到,获得积分10
31秒前
可爱的函函应助粗暴的遥采纳,获得10
31秒前
yjw发布了新的文献求助10
32秒前
脑洞疼应助kang12采纳,获得10
38秒前
伶俐的冰之完成签到,获得积分10
40秒前
亦巧完成签到,获得积分20
41秒前
44秒前
soapffz完成签到,获得积分10
48秒前
小吴同志完成签到,获得积分10
49秒前
畅快不平发布了新的文献求助10
51秒前
隐形紫萍发布了新的文献求助10
53秒前
54秒前
斯文败类应助zwenng采纳,获得10
55秒前
哈哈哈哈完成签到 ,获得积分10
56秒前
CodeCraft应助胡桃夹馍采纳,获得10
56秒前
58秒前
pragmatic发布了新的文献求助10
59秒前
何仙姑完成签到 ,获得积分10
1分钟前
爱撒娇的孤丹完成签到 ,获得积分10
1分钟前
1分钟前
风趣烧鹅完成签到,获得积分10
1分钟前
激动的猫咪完成签到,获得积分20
1分钟前
Charon发布了新的文献求助10
1分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141402
求助须知:如何正确求助?哪些是违规求助? 2792438
关于积分的说明 7802634
捐赠科研通 2448628
什么是DOI,文献DOI怎么找? 1302644
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237