Decision surface optimization in mapping exotic mangrove species (Sonneratia apetala) across latitudinal coastal areas of China

红树林 中国 地理 生态学 生物 环境科学 考古
作者
Chuanpeng Zhao,Cheng‐Zhi Qin,Zongming Wang,Dehua Mao,Yeqiao Wang,Mingming Jia
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:193: 269-283 被引量:18
标识
DOI:10.1016/j.isprsjprs.2022.09.011
摘要

The exotic Sonneratia apetala is widely planted in mangrove afforestation in China due to its high adaptability and fast growth rates. This species has triggered intense debate on its ecological invasion risk during the past decades because of its natural reproduction, dispersal, and spread. However, national plans for the management and control of this exotic species are unclear, partly due to the lack of an accurate distribution map of the species for broad latitudinal areas. Mangrove species with subtle spectral differences and varied growth phases require plenty of samples to describe their spectrum; however, the scarcity of samples resulting from the low accessibility of their habitats hinders the mapping of the species across the national coastal zone. To overcome this problem, we derived S. apetala samples from existing discrete localized studies and then iteratively optimized the trained binary model by incorporating new negative samples until a threshold converged. Negative samples were more easily acquired in areas where the absence of S. apetala had been confirmed. This approach avoids the prerequisite that S. apetala can be distinguished by visual inspections, which is commonly used in routine classification procedures or active learning classifiers. The approach was applied to derive classification results with the help of a Random Forest classifier using both Sentinel-1 and −2 imagery hosted on Google Earth Engine, considering that S. apetala differs from native mangrove species in terms of the large crown, drooping branches, and biochemical properties. The generated S. apetala map was evaluated using three prepared datasets and achieved overall accuracies of 98.1 % and 96.4 % using the test dataset and independent evaluation dataset, respectively, as well as an accuracy of 91.7 % using 145 field samples provided by mangrove specialists. The total area of exotic S. apetala in China reached 2,968 ha in 2020, accounting for 11.0 % of the total mangrove area in China. This study is the first attempt to delineate the detailed national-scale distribution of S. apetala in coastal China. The information provided in this study can support the management and control of S. apetala . The developed approach can be generalized to other vegetation species in broad latitudinal areas, and can be further improved by probing the internal details of the trained classifier.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
南瓜咸杏完成签到,获得积分10
2秒前
陈甸甸完成签到,获得积分10
2秒前
韦威风发布了新的文献求助10
3秒前
3秒前
king完成签到,获得积分10
3秒前
qweerrtt发布了新的文献求助10
4秒前
余三浪完成签到,获得积分10
4秒前
5秒前
lixoii发布了新的文献求助20
5秒前
豌豆射手发布了新的文献求助10
6秒前
科研通AI2S应助k7采纳,获得10
6秒前
wszldmn完成签到,获得积分10
6秒前
坚定的亦绿完成签到,获得积分10
7秒前
7秒前
yurh完成签到,获得积分10
7秒前
小朋友完成签到,获得积分10
8秒前
华仔应助小王采纳,获得10
8秒前
彭于晏应助乔乔采纳,获得10
8秒前
8秒前
1199完成签到,获得积分10
8秒前
8秒前
南瓜完成签到 ,获得积分10
9秒前
eric曾完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
韦威风完成签到,获得积分10
12秒前
请叫我风吹麦浪应助cc采纳,获得30
12秒前
所所应助Ll采纳,获得10
12秒前
阳光的道消完成签到,获得积分10
13秒前
13秒前
13秒前
豌豆射手完成签到,获得积分10
14秒前
14秒前
桑桑发布了新的文献求助10
14秒前
领导范儿应助幸福胡萝卜采纳,获得10
15秒前
明理的小甜瓜完成签到,获得积分10
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762