Decision surface optimization in mapping exotic mangrove species (Sonneratia apetala) across latitudinal coastal areas of China

红树林 中国 地理 生态学 生物 环境科学 考古
作者
Chuanpeng Zhao,Cheng‐Zhi Qin,Zongming Wang,Dehua Mao,Yeqiao Wang,Mingming Jia
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:193: 269-283 被引量:18
标识
DOI:10.1016/j.isprsjprs.2022.09.011
摘要

The exotic Sonneratia apetala is widely planted in mangrove afforestation in China due to its high adaptability and fast growth rates. This species has triggered intense debate on its ecological invasion risk during the past decades because of its natural reproduction, dispersal, and spread. However, national plans for the management and control of this exotic species are unclear, partly due to the lack of an accurate distribution map of the species for broad latitudinal areas. Mangrove species with subtle spectral differences and varied growth phases require plenty of samples to describe their spectrum; however, the scarcity of samples resulting from the low accessibility of their habitats hinders the mapping of the species across the national coastal zone. To overcome this problem, we derived S. apetala samples from existing discrete localized studies and then iteratively optimized the trained binary model by incorporating new negative samples until a threshold converged. Negative samples were more easily acquired in areas where the absence of S. apetala had been confirmed. This approach avoids the prerequisite that S. apetala can be distinguished by visual inspections, which is commonly used in routine classification procedures or active learning classifiers. The approach was applied to derive classification results with the help of a Random Forest classifier using both Sentinel-1 and −2 imagery hosted on Google Earth Engine, considering that S. apetala differs from native mangrove species in terms of the large crown, drooping branches, and biochemical properties. The generated S. apetala map was evaluated using three prepared datasets and achieved overall accuracies of 98.1 % and 96.4 % using the test dataset and independent evaluation dataset, respectively, as well as an accuracy of 91.7 % using 145 field samples provided by mangrove specialists. The total area of exotic S. apetala in China reached 2,968 ha in 2020, accounting for 11.0 % of the total mangrove area in China. This study is the first attempt to delineate the detailed national-scale distribution of S. apetala in coastal China. The information provided in this study can support the management and control of S. apetala . The developed approach can be generalized to other vegetation species in broad latitudinal areas, and can be further improved by probing the internal details of the trained classifier.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Vvvnnnaa1发布了新的文献求助10
2秒前
端庄的皮带完成签到,获得积分10
2秒前
丨小桉柠发布了新的文献求助50
2秒前
Owen应助快醒醒采纳,获得10
3秒前
白河夜船发布了新的文献求助10
4秒前
削皮柚子发布了新的文献求助10
4秒前
bellla发布了新的文献求助10
5秒前
5秒前
hff完成签到 ,获得积分10
5秒前
kkk完成签到 ,获得积分10
6秒前
6秒前
酷波er应助MMM采纳,获得10
7秒前
7秒前
7秒前
9秒前
sunshine完成签到,获得积分10
9秒前
HH完成签到,获得积分10
9秒前
9秒前
生动从菡发布了新的文献求助10
10秒前
10秒前
斯文的依白完成签到,获得积分10
10秒前
touka666发布了新的文献求助20
10秒前
舒克完成签到,获得积分10
11秒前
明杰发布了新的文献求助10
11秒前
小鲤鱼完成签到,获得积分10
11秒前
12秒前
12秒前
13秒前
Vvvnnnaa1完成签到,获得积分10
14秒前
努力的学牲完成签到,获得积分20
14秒前
14秒前
15秒前
15秒前
杭谷波完成签到,获得积分10
15秒前
15秒前
16秒前
Ava应助日月同辉采纳,获得10
16秒前
17秒前
沈平灵发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 1200
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4943184
求助须知:如何正确求助?哪些是违规求助? 4208424
关于积分的说明 13082873
捐赠科研通 3987813
什么是DOI,文献DOI怎么找? 2183287
邀请新用户注册赠送积分活动 1198911
关于科研通互助平台的介绍 1111438