BAED: A secured biometric authentication system using ECG signal based on deep learning techniques

生物识别 计算机科学 指纹(计算) 人工智能 深度学习 卷积神经网络 人工神经网络 认证(法律) 机器学习 掌纹 鉴定(生物学) 计算机安全 数据挖掘 模式识别(心理学) 植物 生物
作者
Allam Jaya Prakash,Kiran Kumar Patro,Mohamed Hammad,Ryszard Tadeusiewicz,Paweł Pławiak
出处
期刊:Biocybernetics and Biomedical Engineering [Elsevier]
卷期号:42 (4): 1081-1093 被引量:11
标识
DOI:10.1016/j.bbe.2022.08.004
摘要

Biometric authentication technology has become increasingly common in our daily lives as information protection and control regulation requirements have grown worldwide. A biometric system must be simple, flexible, efficient, and secure from unauthorized access. The most suitable and flexible biometric traits are the face, fingerprint, palm print, voice, electrocardiogram (ECG), and iris. ECGs are difficult to falsify among these biometric traits and are less attack-prone. However, designing biometric systems based on ECG is very challenging. The major limitations of the existing techniques are that they require a large amount of training data and that they are trained and tested on an on-person database. To cope with these issues, this work proposes a novel biometric authentication scheme based on ECG detection called BAED. The system was developed based on deep learning algorithms, including a convolutional neural network (CNN) and a long-term memory (LSTM) network with a customized activation function. The authors evaluated the proposed model with on-and off-person databases including ECG-ID, Physikalisch-Technische Bundesanstalt (PTB), Check Your Bio-signals Here Initiative (CYBHi), and the University of Toronto Database (UofTDB). In addition to the standard performance parameters, certain key supportive identification parameters such as FMR, FNMR, FAR, and FRR were computed and compared to increase the model’s credibility.The proposed BAED system outperforms prior state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呱呱乐发布了新的文献求助100
刚刚
刚刚
善良的水蓉完成签到,获得积分10
1秒前
隐形曼青应助Delia采纳,获得10
1秒前
1秒前
1秒前
unovember发布了新的文献求助200
2秒前
躺平的牙牙应助文件撤销了驳回
2秒前
ACE发布了新的文献求助10
3秒前
蓝兰完成签到,获得积分10
3秒前
3秒前
3秒前
决堤发布了新的文献求助10
3秒前
sxy发布了新的文献求助10
4秒前
云瑾应助kyoko886采纳,获得10
5秒前
6秒前
6秒前
6秒前
7秒前
8秒前
古的古的应助zhangshaoqi采纳,获得10
8秒前
zqingxia发布了新的文献求助10
9秒前
彭于彦祖应助费小曼采纳,获得50
10秒前
薰硝壤应助费小曼采纳,获得50
10秒前
彭于彦祖应助费小曼采纳,获得50
10秒前
maox1aoxin应助费小曼采纳,获得50
10秒前
薰硝壤应助费小曼采纳,获得50
10秒前
彭于彦祖应助费小曼采纳,获得50
10秒前
薰硝壤应助费小曼采纳,获得50
10秒前
苏书白应助费小曼采纳,获得50
10秒前
Ava应助春夏秋冬采纳,获得10
10秒前
ArthurWaley完成签到,获得积分10
10秒前
商毛毛发布了新的文献求助10
10秒前
大卫在分享应助lala采纳,获得20
12秒前
12秒前
12秒前
13秒前
ding应助呱呱乐采纳,获得10
13秒前
15秒前
欣然起行l完成签到,获得积分10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148993
求助须知:如何正确求助?哪些是违规求助? 2800076
关于积分的说明 7838336
捐赠科研通 2457543
什么是DOI,文献DOI怎么找? 1307913
科研通“疑难数据库(出版商)”最低求助积分说明 628328
版权声明 601685