BAED: A secured biometric authentication system using ECG signal based on deep learning techniques

生物识别 计算机科学 指纹(计算) 人工智能 深度学习 卷积神经网络 人工神经网络 认证(法律) 机器学习 掌纹 鉴定(生物学) 计算机安全 数据挖掘 模式识别(心理学) 植物 生物
作者
Allam Jaya Prakash,Kiran Kumar Patro,Mohamed Hammad,Ryszard Tadeusiewicz,Paweł Pławiak
出处
期刊:Biocybernetics and Biomedical Engineering [Elsevier BV]
卷期号:42 (4): 1081-1093 被引量:11
标识
DOI:10.1016/j.bbe.2022.08.004
摘要

Biometric authentication technology has become increasingly common in our daily lives as information protection and control regulation requirements have grown worldwide. A biometric system must be simple, flexible, efficient, and secure from unauthorized access. The most suitable and flexible biometric traits are the face, fingerprint, palm print, voice, electrocardiogram (ECG), and iris. ECGs are difficult to falsify among these biometric traits and are less attack-prone. However, designing biometric systems based on ECG is very challenging. The major limitations of the existing techniques are that they require a large amount of training data and that they are trained and tested on an on-person database. To cope with these issues, this work proposes a novel biometric authentication scheme based on ECG detection called BAED. The system was developed based on deep learning algorithms, including a convolutional neural network (CNN) and a long-term memory (LSTM) network with a customized activation function. The authors evaluated the proposed model with on-and off-person databases including ECG-ID, Physikalisch-Technische Bundesanstalt (PTB), Check Your Bio-signals Here Initiative (CYBHi), and the University of Toronto Database (UofTDB). In addition to the standard performance parameters, certain key supportive identification parameters such as FMR, FNMR, FAR, and FRR were computed and compared to increase the model’s credibility.The proposed BAED system outperforms prior state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
1秒前
张一迪发布了新的文献求助10
1秒前
2秒前
2秒前
ff完成签到,获得积分10
2秒前
所所应助缓慢向日葵采纳,获得10
3秒前
文献蚂蚁发布了新的文献求助30
4秒前
玛卡巴卡发布了新的文献求助10
4秒前
酷波er应助chengzi采纳,获得10
4秒前
4秒前
冷静剑鬼完成签到,获得积分10
4秒前
路路完成签到,获得积分10
5秒前
单薄雪柳发布了新的文献求助10
5秒前
考拉完成签到,获得积分10
5秒前
5秒前
CarryLJR完成签到,获得积分10
5秒前
小二郎应助清风徐来采纳,获得20
5秒前
5秒前
合适依秋发布了新的文献求助10
5秒前
小安发布了新的文献求助10
6秒前
6秒前
7秒前
ddd完成签到,获得积分10
7秒前
玄乙完成签到,获得积分10
7秒前
7秒前
惊鸿一面完成签到,获得积分10
7秒前
8秒前
贺贺发布了新的文献求助10
8秒前
8秒前
8秒前
wen完成签到,获得积分20
9秒前
爆米花应助乔乔兔采纳,获得10
9秒前
9秒前
脑洞疼应助呃呃呃呃GG采纳,获得10
9秒前
9秒前
乐观的枕头完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261422
求助须知:如何正确求助?哪些是违规求助? 4422535
关于积分的说明 13766643
捐赠科研通 4297013
什么是DOI,文献DOI怎么找? 2357641
邀请新用户注册赠送积分活动 1354024
关于科研通互助平台的介绍 1315182