Ferromagnetic resonance in FePt thin films at elevated temperatures

凝聚态物理 材料科学 铁磁共振 居里温度 磁阻尼 薄膜 马格农 铁磁性 激光线宽 核磁共振 磁化 磁场 纳米技术 物理 光学 振动 量子力学 激光器
作者
Chuan‐Pu Liu,Kumar Srinivasan,Antony Ajan,Ethan McCollum,Alan Kalitsov,Vijaysankar Kalappattil,Mingzhong Wu
出处
期刊:Journal of Magnetism and Magnetic Materials [Elsevier]
卷期号:563: 169988-169988 被引量:4
标识
DOI:10.1016/j.jmmm.2022.169988
摘要

• The ferromagnetic resonance linewidth and Gilbert damping of cubic FePt thin films increase with an increase in temperature towards the Curie temperature. • The dominant damping mechanism in the films is spin-flip magnon-electron scattering. • Two-magnon scattering is relatively weak due to few imperfections and weak anisotropy. • The measurements yield high-temperature Gilbert damping constants for FePt thin films. Understanding of damping processes in ferromagnetic thin films at elevated temperatures has significant implications for heat-assisted magnetic recording, spin-transfer torque memory, and magnetic sensors operating at high temperatures. Through cavity-based high-temperature ferromagnetic resonance (FMR) measurements, this work examined the FMR linewidth and damping properties of continuous cubic FePt thin films at elevated temperatures. The data show that the FMR linewidth and the Gilbert damping constant both increase monotonically when temperature is increased from room temperature toward the Curie temperature. This temperature dependence is opposite to that observed previously in FePt thin films that are granular, rather than continuous, and have L1 0 structure, rather than cubic structure; in those films, the FMR linewidth decreases monotonically with an increase in temperature [PR Applied 10, 054046 (2018)]. These opposite results originate from the difference in the crystalline structure and microstructure of the films. In the previous work, the granular L1 0 -order FePt films hold dense material imperfection and thereby may host strong two-magnon scattering (TMS); the TMS-produced damping decreases with an increase in temperature, giving rise to reduced FMR linewidths at high temperatures. In the current work, the continuous cubic FePt films have much less imperfection and thereby host weak TMS, and the dominant damping mechanism is spin-flip magnon-electron scattering (SF-MES). The SF-MES process becomes stronger with an increase in temperature, giving rise to larger linewidth and higher damping at high temperatures. This work and the previous work together demonstrate that for a given thin-film material, the temperature dependence of the FMR linewidth critically relies on the structural properties of the film. They also indicate that one can engineer damping in magnetic thin films through the control of the structural properties of the films.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyyg完成签到,获得积分10
1秒前
ZZZ完成签到,获得积分10
1秒前
雨雨雨发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
2秒前
3秒前
3秒前
zhubin完成签到 ,获得积分10
3秒前
高高问夏发布了新的文献求助10
3秒前
笑点低蜜蜂完成签到,获得积分10
4秒前
香蕉觅云应助ProfWang采纳,获得10
4秒前
清爽老九发布了新的文献求助10
4秒前
如意发布了新的文献求助10
4秒前
所所应助神勇乐安采纳,获得10
4秒前
5秒前
yyyg发布了新的文献求助10
5秒前
5秒前
小二郎应助时刻保持质疑采纳,获得10
6秒前
i喝凉白开完成签到 ,获得积分10
6秒前
beiyue完成签到,获得积分10
6秒前
丘比特应助keyanrubbish采纳,获得10
6秒前
流浪应助付研琪采纳,获得10
7秒前
害羞鬼完成签到,获得积分10
7秒前
7秒前
韩麒嘉发布了新的文献求助10
8秒前
zywzyw发布了新的文献求助10
8秒前
8秒前
FashionBoy应助cc采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
JiA完成签到,获得积分10
9秒前
小任完成签到,获得积分10
10秒前
果粒橙发布了新的文献求助10
10秒前
斯文败类应助麻辣老妖婆采纳,获得10
10秒前
花飞飞凡发布了新的文献求助10
10秒前
温暖静柏完成签到,获得积分20
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836