Ferromagnetic resonance in FePt thin films at elevated temperatures

凝聚态物理 材料科学 铁磁共振 居里温度 磁阻尼 薄膜 马格农 铁磁性 激光线宽 核磁共振 磁化 磁场 纳米技术 物理 光学 振动 量子力学 激光器
作者
Chuan‐Pu Liu,Kumar Srinivasan,Antony Ajan,Ethan McCollum,Alan Kalitsov,Vijaysankar Kalappattil,Mingzhong Wu
出处
期刊:Journal of Magnetism and Magnetic Materials [Elsevier]
卷期号:563: 169988-169988 被引量:4
标识
DOI:10.1016/j.jmmm.2022.169988
摘要

• The ferromagnetic resonance linewidth and Gilbert damping of cubic FePt thin films increase with an increase in temperature towards the Curie temperature. • The dominant damping mechanism in the films is spin-flip magnon-electron scattering. • Two-magnon scattering is relatively weak due to few imperfections and weak anisotropy. • The measurements yield high-temperature Gilbert damping constants for FePt thin films. Understanding of damping processes in ferromagnetic thin films at elevated temperatures has significant implications for heat-assisted magnetic recording, spin-transfer torque memory, and magnetic sensors operating at high temperatures. Through cavity-based high-temperature ferromagnetic resonance (FMR) measurements, this work examined the FMR linewidth and damping properties of continuous cubic FePt thin films at elevated temperatures. The data show that the FMR linewidth and the Gilbert damping constant both increase monotonically when temperature is increased from room temperature toward the Curie temperature. This temperature dependence is opposite to that observed previously in FePt thin films that are granular, rather than continuous, and have L1 0 structure, rather than cubic structure; in those films, the FMR linewidth decreases monotonically with an increase in temperature [PR Applied 10, 054046 (2018)]. These opposite results originate from the difference in the crystalline structure and microstructure of the films. In the previous work, the granular L1 0 -order FePt films hold dense material imperfection and thereby may host strong two-magnon scattering (TMS); the TMS-produced damping decreases with an increase in temperature, giving rise to reduced FMR linewidths at high temperatures. In the current work, the continuous cubic FePt films have much less imperfection and thereby host weak TMS, and the dominant damping mechanism is spin-flip magnon-electron scattering (SF-MES). The SF-MES process becomes stronger with an increase in temperature, giving rise to larger linewidth and higher damping at high temperatures. This work and the previous work together demonstrate that for a given thin-film material, the temperature dependence of the FMR linewidth critically relies on the structural properties of the film. They also indicate that one can engineer damping in magnetic thin films through the control of the structural properties of the films.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
EVEN发布了新的文献求助10
刚刚
那你也完成签到,获得积分10
1秒前
顾矜应助Ernest采纳,获得30
2秒前
无花果应助北落采纳,获得10
2秒前
酷波er应助房天川采纳,获得20
3秒前
稳重盼夏完成签到,获得积分20
3秒前
CCMay发布了新的文献求助20
3秒前
万能图书馆应助Pendulium采纳,获得10
4秒前
科目三应助杨立胜采纳,获得10
4秒前
zzz完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
慕青应助古木采纳,获得10
5秒前
6秒前
懦弱的沛芹完成签到,获得积分10
7秒前
8秒前
天天快乐应助霸气的南晴采纳,获得10
8秒前
爱学习的叭叭完成签到,获得积分10
8秒前
桐桐应助han采纳,获得10
9秒前
future发布了新的文献求助10
9秒前
miao完成签到,获得积分10
9秒前
ieeat发布了新的文献求助10
11秒前
11秒前
11秒前
小二郎应助PP采纳,获得10
12秒前
洛绮云完成签到,获得积分10
12秒前
英吉利25发布了新的文献求助10
13秒前
orixero应助许xu采纳,获得10
13秒前
ZZJ111发布了新的文献求助20
13秒前
乐辰发布了新的文献求助10
13秒前
14秒前
14秒前
量子星尘发布了新的文献求助30
14秒前
糖不太甜完成签到,获得积分10
15秒前
EVEN发布了新的文献求助10
15秒前
16秒前
科研欣路完成签到,获得积分10
16秒前
搜集达人应助九陌采纳,获得10
17秒前
杨立胜发布了新的文献求助10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717982
求助须知:如何正确求助?哪些是违规求助? 5249617
关于积分的说明 15284035
捐赠科研通 4868135
什么是DOI,文献DOI怎么找? 2614009
邀请新用户注册赠送积分活动 1563957
关于科研通互助平台的介绍 1521400