已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automatic 3D mitral valve leaflet segmentation and validation of quantitative measurement

分割 计算机科学 组内相关 人工智能 Sørensen–骰子系数 模式识别(心理学) 二尖瓣 计算机视觉 图像分割 医学 心脏病学 数学 再现性 统计
作者
Jinhui Chen,Hanzhao Li,Gaowei He,Fengjuan Yao,Lixuan Lai,Jianping Yao,Longhan Xie
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:79: 104166-104166 被引量:3
标识
DOI:10.1016/j.bspc.2022.104166
摘要

3D transesophageal echocardiography (TEE) is widely used in the diagnosis of mitral valve disease and is also well suited for guiding cardiac interventions. The aim of this work is to achieve patient-specific 3D TEE mitral valve leaflet segmentation without any user interaction and to assess the feasibility of 3D quantitative measurements on automatic segmentation model. We suggested a novel pre-training strategy to better implement automatic segmentation. The strategy refers to classify the diastolic and systolic states of the mitral valve through a 3D convolutional neural network architecture, and then use the pretrained weights obtained from the classification task to initialize the parameters of the 3D segmentation deep learning framework. To determine the accuracy of geometric parameters of segmentation model, the measurements of the segmentation model were compared with those obtained by the clinical software. Statistical analysis was performed by using Intraclass Correlation Coefficient and Bland–Altman method. Fourteen 3D volumes were used to evaluate the segmentation performance. The results show a Dice Similarity Coefficient (DSC) of 0.877±0.027 and an Average Surface Distance (ASD) of 0.925±0.392 mm. Twenty-eight 3D volumes were used for the quantitative measurement. The statistical results show that the mitral annular parameters have a good agreement between segmentation model and clinical software except for the annular height. We developed a fully automatic methodology to segment the mitral valve leaflet from 3D TEE and demonstrated the feasibility of improving segmentation performance with the proposed pre-training strategy. The automatic segmentation model was proved to be reliable for performing quantitative measurements of mitral valve annulus dimensions. The results indicate that the precision of the automatic segmentation methodology could pave the way for application in quantification, modeling and surgical planning tools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴世勋fans发布了新的文献求助30
3秒前
4秒前
自信的星完成签到,获得积分10
5秒前
沉默的傲安完成签到,获得积分10
7秒前
mumu完成签到 ,获得积分10
7秒前
9秒前
自信的星发布了新的文献求助10
10秒前
清风拂山岗应助研究员2采纳,获得10
12秒前
乐乐应助豆豆采纳,获得10
13秒前
carly完成签到 ,获得积分10
14秒前
18秒前
19秒前
19秒前
雪白的乘风完成签到 ,获得积分10
25秒前
yommi发布了新的文献求助10
25秒前
上官若男应助Rochester采纳,获得10
25秒前
小王关注了科研通微信公众号
31秒前
31秒前
sadfasf完成签到,获得积分20
34秒前
我是老大应助英勇羿采纳,获得10
34秒前
36秒前
隔壁小黄完成签到 ,获得积分10
40秒前
在水一方应助李老头采纳,获得10
40秒前
SciGPT应助猪猪采纳,获得10
41秒前
Owen应助dogontree采纳,获得10
42秒前
大模型应助ptyz霍建华采纳,获得10
45秒前
50秒前
徐继军完成签到 ,获得积分10
50秒前
53秒前
55秒前
55秒前
李老头发布了新的文献求助10
56秒前
ptyz霍建华发布了新的文献求助10
56秒前
xiaozhang完成签到 ,获得积分10
57秒前
shan发布了新的文献求助10
59秒前
1分钟前
1分钟前
ccm应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
小马甲应助科研通管家采纳,获得10
1分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Pearson Edxecel IGCSE English Language B 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142425
求助须知:如何正确求助?哪些是违规求助? 2793350
关于积分的说明 7806409
捐赠科研通 2449622
什么是DOI,文献DOI怎么找? 1303363
科研通“疑难数据库(出版商)”最低求助积分说明 626850
版权声明 601309