Automatic 3D mitral valve leaflet segmentation and validation of quantitative measurement

分割 计算机科学 组内相关 人工智能 Sørensen–骰子系数 模式识别(心理学) 二尖瓣 计算机视觉 图像分割 医学 心脏病学 数学 再现性 统计
作者
Jinhui Chen,Hanzhao Li,Gaowei He,Fengjuan Yao,Lixuan Lai,Jianping Yao,Longhan Xie
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:79: 104166-104166 被引量:6
标识
DOI:10.1016/j.bspc.2022.104166
摘要

3D transesophageal echocardiography (TEE) is widely used in the diagnosis of mitral valve disease and is also well suited for guiding cardiac interventions. The aim of this work is to achieve patient-specific 3D TEE mitral valve leaflet segmentation without any user interaction and to assess the feasibility of 3D quantitative measurements on automatic segmentation model. We suggested a novel pre-training strategy to better implement automatic segmentation. The strategy refers to classify the diastolic and systolic states of the mitral valve through a 3D convolutional neural network architecture, and then use the pretrained weights obtained from the classification task to initialize the parameters of the 3D segmentation deep learning framework. To determine the accuracy of geometric parameters of segmentation model, the measurements of the segmentation model were compared with those obtained by the clinical software. Statistical analysis was performed by using Intraclass Correlation Coefficient and Bland–Altman method. Fourteen 3D volumes were used to evaluate the segmentation performance. The results show a Dice Similarity Coefficient (DSC) of 0.877±0.027 and an Average Surface Distance (ASD) of 0.925±0.392 mm. Twenty-eight 3D volumes were used for the quantitative measurement. The statistical results show that the mitral annular parameters have a good agreement between segmentation model and clinical software except for the annular height. We developed a fully automatic methodology to segment the mitral valve leaflet from 3D TEE and demonstrated the feasibility of improving segmentation performance with the proposed pre-training strategy. The automatic segmentation model was proved to be reliable for performing quantitative measurements of mitral valve annulus dimensions. The results indicate that the precision of the automatic segmentation methodology could pave the way for application in quantification, modeling and surgical planning tools.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
刚刚
刚刚
初雪发布了新的文献求助10
2秒前
路宇鹏完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
天天快乐应助薛飞采纳,获得10
5秒前
li发布了新的文献求助10
5秒前
5秒前
Return发布了新的文献求助10
6秒前
cjh发布了新的文献求助10
6秒前
6秒前
鲤鱼水桃发布了新的文献求助10
6秒前
友好安白发布了新的文献求助10
8秒前
小马甲应助笑点低雨筠采纳,获得10
9秒前
行走人生发布了新的文献求助30
9秒前
喵喵完成签到 ,获得积分10
9秒前
Dy发布了新的文献求助10
9秒前
小鬼发布了新的文献求助10
10秒前
勤奋的缘郡完成签到,获得积分10
11秒前
994发布了新的文献求助10
11秒前
李健的小迷弟应助ZNX采纳,获得10
11秒前
12秒前
小蘑菇应助jovrtic采纳,获得10
12秒前
饱满以松完成签到 ,获得积分10
12秒前
15秒前
深情安青应助Scarlett采纳,获得10
16秒前
19秒前
小giao吃不饱完成签到,获得积分10
20秒前
20秒前
Lucas应助腼腆的月亮采纳,获得10
20秒前
红火完成签到 ,获得积分10
20秒前
xlnju完成签到,获得积分10
22秒前
123发布了新的文献求助30
23秒前
123发布了新的文献求助10
25秒前
yanzw发布了新的文献求助10
26秒前
jovrtic发布了新的文献求助10
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649914
求助须知:如何正确求助?哪些是违规求助? 4779409
关于积分的说明 15050588
捐赠科研通 4808829
什么是DOI,文献DOI怎么找? 2571871
邀请新用户注册赠送积分活动 1528143
关于科研通互助平台的介绍 1486917