Automatic 3D mitral valve leaflet segmentation and validation of quantitative measurement

分割 计算机科学 组内相关 人工智能 Sørensen–骰子系数 模式识别(心理学) 二尖瓣 计算机视觉 图像分割 医学 心脏病学 数学 再现性 统计
作者
Jinhui Chen,Hanzhao Li,Gaowei He,Fengjuan Yao,Lixuan Lai,Jianping Yao,Longhan Xie
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:79: 104166-104166 被引量:6
标识
DOI:10.1016/j.bspc.2022.104166
摘要

3D transesophageal echocardiography (TEE) is widely used in the diagnosis of mitral valve disease and is also well suited for guiding cardiac interventions. The aim of this work is to achieve patient-specific 3D TEE mitral valve leaflet segmentation without any user interaction and to assess the feasibility of 3D quantitative measurements on automatic segmentation model. We suggested a novel pre-training strategy to better implement automatic segmentation. The strategy refers to classify the diastolic and systolic states of the mitral valve through a 3D convolutional neural network architecture, and then use the pretrained weights obtained from the classification task to initialize the parameters of the 3D segmentation deep learning framework. To determine the accuracy of geometric parameters of segmentation model, the measurements of the segmentation model were compared with those obtained by the clinical software. Statistical analysis was performed by using Intraclass Correlation Coefficient and Bland–Altman method. Fourteen 3D volumes were used to evaluate the segmentation performance. The results show a Dice Similarity Coefficient (DSC) of 0.877±0.027 and an Average Surface Distance (ASD) of 0.925±0.392 mm. Twenty-eight 3D volumes were used for the quantitative measurement. The statistical results show that the mitral annular parameters have a good agreement between segmentation model and clinical software except for the annular height. We developed a fully automatic methodology to segment the mitral valve leaflet from 3D TEE and demonstrated the feasibility of improving segmentation performance with the proposed pre-training strategy. The automatic segmentation model was proved to be reliable for performing quantitative measurements of mitral valve annulus dimensions. The results indicate that the precision of the automatic segmentation methodology could pave the way for application in quantification, modeling and surgical planning tools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美满的小蘑菇完成签到 ,获得积分10
1秒前
orixero应助温暖寻雪采纳,获得10
3秒前
TT发布了新的文献求助10
4秒前
卡拉蹦蹦完成签到 ,获得积分10
5秒前
科研通AI5应助迅速又菡采纳,获得10
5秒前
科研通AI2S应助XYN1采纳,获得10
5秒前
5秒前
可靠的芒果完成签到,获得积分10
6秒前
ding应助轻松旭尧采纳,获得10
7秒前
王王王完成签到,获得积分10
7秒前
轨迹发布了新的文献求助20
8秒前
脑洞疼应助自然的致远采纳,获得10
10秒前
higher荔枝完成签到 ,获得积分10
10秒前
糖糖完成签到,获得积分10
11秒前
11秒前
丘比特应助标致逊采纳,获得10
13秒前
14秒前
14秒前
梦梦发布了新的文献求助10
15秒前
15秒前
是阿乔呢完成签到,获得积分10
16秒前
温暖寻雪完成签到,获得积分10
16秒前
16秒前
18秒前
温暖寻雪发布了新的文献求助10
18秒前
GCS12发布了新的文献求助10
20秒前
田様应助狂炫一大晚采纳,获得10
21秒前
21秒前
啾啾发布了新的文献求助10
22秒前
25秒前
Jianjian发布了新的文献求助10
25秒前
danporzhu完成签到,获得积分10
26秒前
半面妆发布了新的文献求助10
26秒前
wanwan完成签到,获得积分10
27秒前
GCS12发布了新的文献求助10
30秒前
31秒前
31秒前
lucky完成签到,获得积分10
33秒前
33秒前
半面妆完成签到,获得积分20
33秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Machine Learning Methods in Geoscience 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 888
Massenspiele, Massenbewegungen. NS-Thingspiel, Arbeiterweibespiel und olympisches Zeremoniell 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3727881
求助须知:如何正确求助?哪些是违规求助? 3272958
关于积分的说明 9979258
捐赠科研通 2988340
什么是DOI,文献DOI怎么找? 1639535
邀请新用户注册赠送积分活动 778803
科研通“疑难数据库(出版商)”最低求助积分说明 747817