Automatic 3D mitral valve leaflet segmentation and validation of quantitative measurement

分割 计算机科学 组内相关 人工智能 Sørensen–骰子系数 模式识别(心理学) 二尖瓣 计算机视觉 图像分割 医学 心脏病学 数学 再现性 统计
作者
Jinhui Chen,Hanzhao Li,Gaowei He,Fengjuan Yao,Lixuan Lai,Jianping Yao,Longhan Xie
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:79: 104166-104166 被引量:6
标识
DOI:10.1016/j.bspc.2022.104166
摘要

3D transesophageal echocardiography (TEE) is widely used in the diagnosis of mitral valve disease and is also well suited for guiding cardiac interventions. The aim of this work is to achieve patient-specific 3D TEE mitral valve leaflet segmentation without any user interaction and to assess the feasibility of 3D quantitative measurements on automatic segmentation model. We suggested a novel pre-training strategy to better implement automatic segmentation. The strategy refers to classify the diastolic and systolic states of the mitral valve through a 3D convolutional neural network architecture, and then use the pretrained weights obtained from the classification task to initialize the parameters of the 3D segmentation deep learning framework. To determine the accuracy of geometric parameters of segmentation model, the measurements of the segmentation model were compared with those obtained by the clinical software. Statistical analysis was performed by using Intraclass Correlation Coefficient and Bland–Altman method. Fourteen 3D volumes were used to evaluate the segmentation performance. The results show a Dice Similarity Coefficient (DSC) of 0.877±0.027 and an Average Surface Distance (ASD) of 0.925±0.392 mm. Twenty-eight 3D volumes were used for the quantitative measurement. The statistical results show that the mitral annular parameters have a good agreement between segmentation model and clinical software except for the annular height. We developed a fully automatic methodology to segment the mitral valve leaflet from 3D TEE and demonstrated the feasibility of improving segmentation performance with the proposed pre-training strategy. The automatic segmentation model was proved to be reliable for performing quantitative measurements of mitral valve annulus dimensions. The results indicate that the precision of the automatic segmentation methodology could pave the way for application in quantification, modeling and surgical planning tools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Andyfragrance完成签到,获得积分10
刚刚
刚刚
小蘑菇应助velsaber采纳,获得10
刚刚
刚刚
英俊的铭应助cz采纳,获得10
1秒前
烟花应助ZiZi采纳,获得10
2秒前
2秒前
思源应助郑zheng采纳,获得10
2秒前
77发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
wwwwppp完成签到,获得积分10
3秒前
4秒前
英姑应助你是我的唯一采纳,获得10
5秒前
薛定谔的科研人完成签到,获得积分10
5秒前
云边完成签到,获得积分10
5秒前
6秒前
6秒前
vikoel发布了新的文献求助10
6秒前
传奇3应助JYY_slby采纳,获得10
7秒前
7秒前
orixero应助Peng采纳,获得10
7秒前
科研通AI6应助任梁辰采纳,获得10
7秒前
jim_hacker完成签到,获得积分10
7秒前
7秒前
CC应助月yue采纳,获得10
7秒前
8秒前
Uacthee完成签到,获得积分10
9秒前
垃圾二硫自组装纳米粒完成签到,获得积分10
10秒前
卡皮巴拉完成签到,获得积分20
10秒前
小马甲应助醒醒采纳,获得10
10秒前
10秒前
11秒前
Nwafu完成签到,获得积分10
11秒前
11秒前
YeMa发布了新的文献求助10
12秒前
12秒前
盛意发布了新的文献求助10
12秒前
12秒前
一步之遥发布了新的文献求助10
12秒前
flipped完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
按地区划分的1,091个公共养老金档案列表 801
Work, Vacation and Well-being 500
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Rural Geographies People, Place and the Countryside 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410713
求助须知:如何正确求助?哪些是违规求助? 4528079
关于积分的说明 14114318
捐赠科研通 4442786
什么是DOI,文献DOI怎么找? 2438020
邀请新用户注册赠送积分活动 1430164
关于科研通互助平台的介绍 1408008