Automatic 3D mitral valve leaflet segmentation and validation of quantitative measurement

分割 计算机科学 组内相关 人工智能 Sørensen–骰子系数 模式识别(心理学) 二尖瓣 计算机视觉 图像分割 医学 心脏病学 数学 再现性 统计
作者
Jinhui Chen,Hanzhao Li,Gaowei He,Fengjuan Yao,Lixuan Lai,Jianping Yao,Longhan Xie
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:79: 104166-104166 被引量:6
标识
DOI:10.1016/j.bspc.2022.104166
摘要

3D transesophageal echocardiography (TEE) is widely used in the diagnosis of mitral valve disease and is also well suited for guiding cardiac interventions. The aim of this work is to achieve patient-specific 3D TEE mitral valve leaflet segmentation without any user interaction and to assess the feasibility of 3D quantitative measurements on automatic segmentation model. We suggested a novel pre-training strategy to better implement automatic segmentation. The strategy refers to classify the diastolic and systolic states of the mitral valve through a 3D convolutional neural network architecture, and then use the pretrained weights obtained from the classification task to initialize the parameters of the 3D segmentation deep learning framework. To determine the accuracy of geometric parameters of segmentation model, the measurements of the segmentation model were compared with those obtained by the clinical software. Statistical analysis was performed by using Intraclass Correlation Coefficient and Bland–Altman method. Fourteen 3D volumes were used to evaluate the segmentation performance. The results show a Dice Similarity Coefficient (DSC) of 0.877±0.027 and an Average Surface Distance (ASD) of 0.925±0.392 mm. Twenty-eight 3D volumes were used for the quantitative measurement. The statistical results show that the mitral annular parameters have a good agreement between segmentation model and clinical software except for the annular height. We developed a fully automatic methodology to segment the mitral valve leaflet from 3D TEE and demonstrated the feasibility of improving segmentation performance with the proposed pre-training strategy. The automatic segmentation model was proved to be reliable for performing quantitative measurements of mitral valve annulus dimensions. The results indicate that the precision of the automatic segmentation methodology could pave the way for application in quantification, modeling and surgical planning tools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aktuell发布了新的文献求助10
刚刚
2秒前
愉快的海完成签到,获得积分20
3秒前
星黛Lu完成签到,获得积分10
3秒前
5秒前
7秒前
愉快的海发布了新的文献求助10
7秒前
紫陌完成签到,获得积分0
7秒前
8秒前
lzh353512377发布了新的文献求助10
9秒前
蜗牛完成签到,获得积分20
10秒前
10秒前
11秒前
认真的TOTORO完成签到,获得积分10
11秒前
11秒前
胖川完成签到,获得积分10
12秒前
哈哈哈完成签到,获得积分10
13秒前
大个应助疯子魔煞采纳,获得30
14秒前
14秒前
15秒前
SIDEsss完成签到,获得积分0
15秒前
林平之完成签到,获得积分10
15秒前
FashionBoy应助liyingbin采纳,获得10
17秒前
17秒前
18秒前
共享精神应助JEAN采纳,获得10
18秒前
朵拉A梦完成签到,获得积分10
19秒前
搜集达人应助三岁半采纳,获得10
19秒前
科研通AI2S应助高兴的半仙采纳,获得10
19秒前
奥利奥爱好者完成签到,获得积分10
20秒前
20秒前
锦鲤完成签到 ,获得积分10
22秒前
Alessnndre完成签到,获得积分20
22秒前
23秒前
娇气的雁兰完成签到,获得积分10
23秒前
赵世璧发布了新的文献求助10
23秒前
无花果应助聪明的青寒采纳,获得10
24秒前
Kk完成签到,获得积分10
24秒前
24秒前
垃圾完成签到 ,获得积分10
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958068
求助须知:如何正确求助?哪些是违规求助? 3504219
关于积分的说明 11117555
捐赠科研通 3235582
什么是DOI,文献DOI怎么找? 1788351
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802511