SpikeBASE: Spiking Neural Learning Algorithm With Backward Adaptation of Synaptic Efflux

尖峰神经网络 计算机科学 反向传播 人工智能 适应(眼睛) 人工神经网络 机器学习 神经科学 生物
作者
Jake Stauffer,Qingxue Zhang
出处
期刊:IEEE Transactions on Computers [Institute of Electrical and Electronics Engineers]
卷期号:71 (11): 2707-2716 被引量:3
标识
DOI:10.1109/tc.2022.3197089
摘要

Brain-inspired Spiking Neural Network (SNN) is opening new possibilities towards human-level intelligence, by leveraging its nature of spatiotemporal information encoding and processing that bring both learning effectiveness and energy efficiency. Although substantial advances in SNN studies have been made, highly effective SNN learning algorithms are still urged, driven by the challenges of coordinating spiking spatiotemporal dynamics. We therefore propose a novel algorithm, SpikeBASE, denoting Spiking learning with Backward Adaption of Synaptic Efflux, to globally, supervisedly, and comprehensively coordinate the synaptic dynamics including both synaptic strength and responses. SpikeBASE can learn synaptic strength by backpropagating the error through the predefined synaptic responses. More importantly, SpikeBASE enables synaptic response adaptation through backpropagation, to mimic the complex dynamics of neural transmissions. Further, SpikeBASE enables multi-scale temporal memory formation by supporting multi-synaptic response adaptation. We have evaluated the algorithm on a challenging scarce data learning task and shown highly promising performance. The proposed SpikeBASE algorithm, through comprehensively coordinating the learning of synaptic strength, synaptic responses, and multi-scale temporal memory formation, has demonstrated its effectiveness on end-to-end SNN training. This study is expected to greatly advance the learning effectiveness of SNN and thus broadly benefit smart and efficient big data applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
是木易呀完成签到,获得积分10
刚刚
刚刚
火域冥发布了新的文献求助30
1秒前
2秒前
123发布了新的文献求助10
2秒前
2秒前
小高加油完成签到,获得积分10
3秒前
魔幻友菱发布了新的文献求助10
4秒前
互助遵法尚德应助kklkimo采纳,获得10
4秒前
Russell完成签到 ,获得积分10
5秒前
Winston完成签到,获得积分10
5秒前
KimTran应助林途采纳,获得10
6秒前
7秒前
7秒前
7秒前
9秒前
科目三应助科研菜鸟采纳,获得10
9秒前
10秒前
兔BF完成签到 ,获得积分10
10秒前
飞鱼发布了新的文献求助10
13秒前
wanlino1完成签到,获得积分10
13秒前
情怀应助想查文献的小黄采纳,获得10
13秒前
guodu完成签到 ,获得积分20
13秒前
酷波er应助zhangzhangzhang采纳,获得10
14秒前
大个应助没有银采纳,获得10
14秒前
14秒前
大方芾发布了新的文献求助10
15秒前
iY发布了新的文献求助30
15秒前
大个应助12138采纳,获得10
15秒前
苗玉完成签到,获得积分10
17秒前
18秒前
18秒前
测试号完成签到 ,获得积分10
18秒前
20秒前
20秒前
21秒前
米夏完成签到 ,获得积分10
21秒前
平常向雪完成签到 ,获得积分10
21秒前
飞快的孱完成签到,获得积分10
22秒前
颜颜发布了新的文献求助10
24秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151736
求助须知:如何正确求助?哪些是违规求助? 2803153
关于积分的说明 7852024
捐赠科研通 2460525
什么是DOI,文献DOI怎么找? 1309844
科研通“疑难数据库(出版商)”最低求助积分说明 629061
版权声明 601760