A chaos-based block cipher based on an enhanced logistic map and simultaneous confusion-diffusion operations

混乱 混沌(操作系统) 分组密码 逻辑图 计算机科学 块(置换群论) 换位密码 扩散 密码 运行密钥密码 算法 计算机安全 密码学 数学 加密 物理 心理学 组合数学 精神分析 热力学
作者
Moatsum Alawida,Je Sen Teh,Abid Mehmood,Abdulhadi Shoufan,Wafa’ Hamdan Alshoura
出处
期刊:Journal of King Saud University - Computer and Information Sciences [Elsevier]
卷期号:34 (10): 8136-8151 被引量:43
标识
DOI:10.1016/j.jksuci.2022.07.025
摘要

Over the years, there has been considerable interest in the area of chaos-based encryption due to the fact that cryptographic algorithms and chaotic maps share a wide-range of similar characteristics. The majority of chaos-based ciphers were designed for encrypting digital images and vast amounts of data. This paper proposes a new chaos-based block cipher algorithm (CBCA) based on an improved logistic chaotic map. To strengthen the performance of the classical logistic chaotic map, a new chaotification method based on a multiplicative inverse function is used which leads to improved properties such as ergodicity and entropy, both of which are desirable for cryptographic applications. The secret key is used to perturb the chaotic variables, and these perturbed variables are used to produce data sequences for the block cipher's diffusion and confusion structures. The permutation (diffusion) structure is controlled by an ergodic chaotic map, while the substitution (confusion) structure is controlled by the chaotic points themselves. This new ergodicity-based diffusion approach provides higher security and efficiency. The proposed algorithm not only possess good statistical properties provided by the enhanced chaotic map, but it is also key sensitive and uniformly distributed. Statistical evaluation of the proposed algorithm was performed using text and images as inputs to depict its capability to secure various types of media. The performance of the proposed cipher is then compared to other recently proposed algorithms in literature. The performance comparison indicates that CBCA is efficient, secure and that it can be used to encrypt both small and large amounts of data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
淡定紫菱发布了新的文献求助10
1秒前
李繁蕊发布了新的文献求助10
3秒前
万能图书馆应助愉快寄真采纳,获得10
3秒前
Rrr发布了新的文献求助10
3秒前
4秒前
4秒前
高兴藏花发布了新的文献求助10
4秒前
5秒前
顾闭月发布了新的文献求助10
7秒前
励志小薛完成签到,获得积分20
8秒前
doudou完成签到,获得积分10
8秒前
9秒前
Ting完成签到,获得积分10
10秒前
高兴藏花完成签到 ,获得积分20
10秒前
健忘的沛蓝完成签到 ,获得积分10
10秒前
clear发布了新的文献求助10
11秒前
11秒前
感动傀斗完成签到,获得积分10
11秒前
眼睛大的小鸽子完成签到 ,获得积分10
11秒前
hu完成签到,获得积分10
11秒前
科研通AI5应助顺顺采纳,获得10
11秒前
思源应助shengChen采纳,获得10
12秒前
宁静致远发布了新的文献求助10
13秒前
zhenpeng8888完成签到 ,获得积分10
13秒前
霜序初四完成签到 ,获得积分10
13秒前
14秒前
爆米花应助青木蓝采纳,获得10
14秒前
顾矜应助frank采纳,获得10
15秒前
heavennew完成签到,获得积分10
15秒前
充电宝应助绘梨衣采纳,获得10
16秒前
华仔应助励志小薛采纳,获得10
16秒前
16秒前
16秒前
单薄新烟发布了新的文献求助10
17秒前
17秒前
桐桐应助小王采纳,获得10
17秒前
18秒前
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794