Observed sensitivities of PM2.5 and O3 extremes to meteorological conditions in China and implications for the future

环境科学 大气科学 气候学 中国 气象学 地理 地质学 考古
作者
Xiaorui Zhang,Xiang Xiao,Fan Wang,Guy Brasseur,Siyu Chen,Jing Wang,Meng Gao
出处
期刊:Environment International [Elsevier BV]
卷期号:168: 107428-107428 被引量:45
标识
DOI:10.1016/j.envint.2022.107428
摘要

Frequent extreme air pollution episodes in China accompanied with high concentrations of particulate matters (PM2.5) and ozone (O3) are partly supported by meteorological conditions. However, the relationships between meteorological variables and pollution extremes can be poorly estimated solely based on mean pollutant level. In this study, we use quantile regression to investigate meteorological sensitivities of PM2.5 and O3 extremes, benefiting from nationwide observations of air pollutants over 2013–2019 in China. Results show that surface winds and humidity are identified as key drivers for high PM2.5 events during both summer and winter, with greater sensitivities at higher percentiles. Higher humidity favors the hydroscopic growth of particles during winter, but it tends to decrease PM2.5 through wet scavenging during summer. Surface temperature play dominant role in summer O3 extremes, especially in VOC-limited regime, followed by surface winds and radiation. Sensitivities of O3 to meteorological conditions are relatively unchanging across percentiles. Under the fossil-fueled development pathway (SSP5–8.5) scenario, meteorological conditions are projected to favor winter PM2.5 extremes in North China Plain (NCP), Yangtze River Delta (YRD) and Sichuan Basin (SCB), mainly due to enhanced surface specific humidity. Summer O3 extremes are likely to occur more frequently in the NCP and YRD, associated with warmer temperature and stronger solar radiation. Besides, meteorological conditions over a relatively longer period play a more important role in the formation of pollution extremes. These results improve our understanding of the relationships between extreme PM2.5 and O3 pollution and meteorology, and can be used as a valuable reference of model predicted air pollution extremes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
CAOHOU应助haha采纳,获得10
6秒前
高大的蜡烛完成签到,获得积分10
7秒前
FF发布了新的文献求助10
9秒前
XHT完成签到 ,获得积分10
12秒前
xingxingwang完成签到,获得积分10
13秒前
Liufgui应助@A采纳,获得10
17秒前
19秒前
xxxxxb完成签到,获得积分10
19秒前
Zac完成签到,获得积分10
22秒前
Janisa完成签到,获得积分10
25秒前
LXZ发布了新的文献求助10
26秒前
李爱国应助hfnnn采纳,获得10
27秒前
FF完成签到,获得积分10
27秒前
星星未打烊完成签到 ,获得积分10
31秒前
Hello应助科研通管家采纳,获得10
32秒前
赘婿应助科研通管家采纳,获得30
32秒前
乐乐应助科研通管家采纳,获得10
32秒前
32秒前
32秒前
无花果应助科研通管家采纳,获得10
32秒前
32秒前
852应助科研通管家采纳,获得10
32秒前
烟花应助科研通管家采纳,获得10
32秒前
34秒前
36秒前
Santiago完成签到,获得积分10
37秒前
落后雁开发布了新的文献求助10
39秒前
41秒前
传奇3应助jopaul采纳,获得10
42秒前
不将道理发布了新的文献求助10
42秒前
慧仔53完成签到,获得积分10
43秒前
奋斗机器猫完成签到 ,获得积分10
44秒前
45秒前
hfnnn发布了新的文献求助10
46秒前
49秒前
51秒前
健忘芷珊发布了新的文献求助10
53秒前
我是老大应助hfnnn采纳,获得10
55秒前
在水一方应助hfnnn采纳,获得10
55秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999224
求助须知:如何正确求助?哪些是违规求助? 3538589
关于积分的说明 11274664
捐赠科研通 3277444
什么是DOI,文献DOI怎么找? 1807597
邀请新用户注册赠送积分活动 883950
科研通“疑难数据库(出版商)”最低求助积分说明 810080