MSFR‐Net: Multi‐modality and single‐modality feature recalibration network for brain tumor segmentation

模态(人机交互) 人工智能 计算机科学 分割 特征(语言学) 模式识别(心理学) 语言学 哲学
作者
Xiang Li,Yuchen Jiang,Minglei Li,Jiusi Zhang,Shen Yin,Hao Luo
出处
期刊:Medical Physics [Wiley]
卷期号:50 (4): 2249-2262 被引量:15
标识
DOI:10.1002/mp.15933
摘要

Abstract Background Accurate and automated brain tumor segmentation from multi‐modality MR images plays a significant role in tumor treatment. However, the existing approaches mainly focus on the fusion of multi‐modality while ignoring the correlation between single‐modality and tumor subcomponents. For example, T2‐weighted images show good visualization of edema, and T1‐contrast images have a good contrast between enhancing tumor core and necrosis. In the actual clinical process, professional physicians also label tumors according to these characteristics. We design a method for brain tumors segmentation that utilizes both multi‐modality fusion and single‐modality characteristics. Methods A multi‐modality and single‐modality feature recalibration network (MSFR‐Net) is proposed for brain tumor segmentation from MR images. Specifically, multi‐modality information and single‐modality information are assigned to independent pathways. Multi‐modality network explicitly learns the relationship between all modalities and all tumor sub‐components. Single‐modality network learns the relationship between single‐modality and its highly correlated tumor subcomponents. Then, a dual recalibration module (DRM) is designed to connect the parallel single‐modality network and multi‐modality network at multiple stages. The function of the DRM is to unify the two types of features into the same feature space. Results Experiments on BraTS 2015 dataset and BraTS 2018 dataset show that the proposed method is competitive and superior to other state‐of‐the‐art methods. The proposed method achieved the segmentation results with Dice coefficients of 0.86 and Hausdorff distance of 4.82 on BraTS 2018 dataset, with dice coefficients of 0.80, positive predictive value of 0.76, and sensitivity of 0.78 on BraTS 2015 dataset. Conclusions This work combines the manual labeling process of doctors and introduces the correlation between single‐modality and the tumor subcomponents into the segmentation network. The method improves the segmentation performance of brain tumors and can be applied in the clinical practice. The code of the proposed method is available at: https://github.com/xiangQAQ/MSFR‐Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
2秒前
英姑应助孤独睫毛采纳,获得10
3秒前
4秒前
我是老大应助腌黄瓜女士采纳,获得10
5秒前
7秒前
7秒前
852应助DDDD采纳,获得10
7秒前
晚风发布了新的文献求助10
8秒前
科研通AI2S应助Raintoo_采纳,获得10
8秒前
陈澄橙完成签到,获得积分10
8秒前
木木发布了新的文献求助10
8秒前
愉快寒香完成签到,获得积分10
9秒前
jia完成签到 ,获得积分10
9秒前
林鱼丸完成签到,获得积分10
9秒前
活力盼晴发布了新的文献求助10
10秒前
professor完成签到,获得积分10
11秒前
卷网那个完成签到,获得积分10
11秒前
xiaixax发布了新的文献求助10
12秒前
Crest发布了新的文献求助20
12秒前
Akim应助练习者采纳,获得10
13秒前
orixero应助Lei采纳,获得10
13秒前
13秒前
14秒前
苻沛蓝完成签到,获得积分10
15秒前
15秒前
yishengheqiu发布了新的文献求助10
18秒前
韩冬梅发布了新的文献求助10
18秒前
19秒前
孤独睫毛发布了新的文献求助10
20秒前
20秒前
FashionBoy应助shiyi采纳,获得10
21秒前
21秒前
21秒前
小晋完成签到,获得积分10
21秒前
梧桐树完成签到,获得积分10
24秒前
24秒前
Inwhite发布了新的文献求助10
25秒前
CC发布了新的文献求助10
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3765628
求助须知:如何正确求助?哪些是违规求助? 3310177
关于积分的说明 10153699
捐赠科研通 3025484
什么是DOI,文献DOI怎么找? 1660517
邀请新用户注册赠送积分活动 793415
科研通“疑难数据库(出版商)”最低求助积分说明 755616