控制理论(社会学)
模型预测控制
运动规划
控制器(灌溉)
避障
路径(计算)
障碍物
弹道
包络线(雷达)
控制工程
跟踪(教育)
理论(学习稳定性)
职位(财务)
计算机科学
离散化
工程类
控制(管理)
机器人
人工智能
移动机器人
数学
航空航天工程
经济
天文
财务
物理
雷达
程序设计语言
农学
政治学
机器学习
生物
数学分析
法学
心理学
教育学
作者
Matthew Brown,Joseph Funke,Stephen M. Erlien,J. Christian Gerdes
标识
DOI:10.1016/j.conengprac.2016.04.013
摘要
One approach to motion control of autonomous vehicles is to divide control between path planning and path tracking. This paper introduces an alternative control framework that integrates local path planning and path tracking using model predictive control (MPC). The controller plans trajectories, consisting of position and velocity states, that best follow a desired path while remaining within two safe envelopes. One envelope corresponds to conditions for stability and the other to obstacle avoidance. This enables the controller to safely and minimally deviate from a nominal path if necessary to avoid spinning out or colliding with an obstacle. A long prediction horizon allows action in the present to avoid a dangerous situation in the future. This motivates the use of a first-order hold discretization method that maintains model fidelity and computational feasibility. The controller is implemented in real-time on an experimental vehicle for several driving scenarios.
科研通智能强力驱动
Strongly Powered by AbleSci AI