In this study, we introduce AlF3-coated LiMn2O4 cathodes, which are cost-effective and environmentally benign, for use in the aqueous rechargeable lithium-ion battery. The homogeneous AlF3 coating on the LiMn2O4 powder is synthesized by a simple chemical deposition method. The thickness of the coating is controlled by varying the quantity of AlF3 used, in order to optimize the balance between polarization and surface stabilization. The optimized LiMn2O4, having 2 wt% coating of AlF3, exhibits a long cycle life having a capacity retention of 90% after 100 cycles, and a highly improved rate capability, when compared with the pristine LiMn2O4 material, in 1 M Li2SO4 aqueous electrolyte solution. The systematic surface analyses, comprising scanning electron microscopy, X-ray photoelectron spectroscopy, and electrochemical analyses, indicate that the AlF3 coating on the LiMn2O4 surface successfully reduces the surface deterioration of LiMn2O4 caused by side reactions between the electrolyte solution and the active material.