Development of the End-Effector of a Picking Robot for Greenhouse-Grown Tomatoes

温室 效应器 机器人末端执行器 机器人 农业工程 工程类 计算机科学 园艺 细胞生物学 生物 人工智能
作者
Yi-Chich Chiu,Pen-Yuan Yang,Suming Chen
出处
期刊:Applied Engineering in Agriculture [American Society of Agricultural and Biological Engineers]
卷期号:: 1001-1009 被引量:50
标识
DOI:10.13031/aea.29.9913
摘要

<italic>Abstract.</italic> The objective of this study was to develop a grip-type end-effector for use in a picking robot designed to harvest greenhouse-grown tomatoes. The end-effector was designed with four fingers that have foam sponge pads inside to reduce damaging the fruit when bending and gripping. By controlling solenoid activation, the fingers are bent to reduce the opening of the tip, securing the fruit inside the end-effector. The center of the end-effector is a fruit suction device, which assists the fixation of fruit to the inside of end-effector, enhancing the holding performance. Test results show that the best suction performance is achieved using vacuum suction nozzles 15.0 mm in diameter and a suction force of 8.1 N/cm2. The average suction attachment success rate is 95.3% and the average picking time is 74.6 s for each fruit. When picking the suction-attached fruit, the end-effector makes vertical inching movements over 60 mm for two cycles, achieving an optimal fruit picking success rate. Various twisting angles are examined in this study, and the picking force required is analyzed. The results show that before picking tomatoes, the end-effector should be rotated clockwise for 60° followed by a counterclockwise turn of 120° until the fruit is 60° counterclockwise to the starting alignment, repeated three times in relation to the fruit. The initial laboratory tests show promising results. Future integration with robotic tomato-harvesting systems for actual field tests of tomato picking should increase the feasibility of developing automatic robotic picking systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助小眼儿采纳,获得10
1秒前
lii应助我先睡了采纳,获得10
2秒前
2秒前
zhang发布了新的文献求助10
4秒前
4秒前
大模型应助专一的凛采纳,获得10
5秒前
5秒前
6秒前
aaaaaa发布了新的文献求助10
7秒前
7秒前
展希希发布了新的文献求助20
8秒前
hahhh7完成签到,获得积分10
9秒前
johnny发布了新的文献求助10
9秒前
9秒前
许子健完成签到,获得积分10
10秒前
小眼儿发布了新的文献求助10
12秒前
脑洞疼应助aaaaaa采纳,获得10
13秒前
13秒前
Bryan应助热心小松鼠采纳,获得10
14秒前
unless完成签到,获得积分10
14秒前
冬去春来发布了新的文献求助10
15秒前
俭朴的小熊猫完成签到,获得积分10
15秒前
勤勤的新星完成签到,获得积分10
15秒前
传统的斓完成签到,获得积分10
15秒前
johnny完成签到,获得积分10
16秒前
yan发布了新的文献求助10
16秒前
20秒前
scc完成签到,获得积分10
22秒前
科研通AI2S应助热心小松鼠采纳,获得10
22秒前
东木应助热心小松鼠采纳,获得30
22秒前
Bryan应助热心小松鼠采纳,获得10
22秒前
Bryan应助热心小松鼠采纳,获得10
22秒前
JHHHH完成签到,获得积分10
23秒前
佳佳应助坚强谷槐采纳,获得10
23秒前
24秒前
24秒前
甜美无剑应助科研通管家采纳,获得30
26秒前
大个应助科研通管家采纳,获得10
27秒前
丘比特应助科研通管家采纳,获得30
27秒前
orixero应助科研通管家采纳,获得10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966777
求助须知:如何正确求助?哪些是违规求助? 3512284
关于积分的说明 11162496
捐赠科研通 3247199
什么是DOI,文献DOI怎么找? 1793690
邀请新用户注册赠送积分活动 874588
科研通“疑难数据库(出版商)”最低求助积分说明 804432