化学
对映选择合成
亲核细胞
氟化物
取代基
催化作用
药物化学
组合化学
立体化学
光化学
有机化学
无机化学
作者
Julia A. Kalow,Abigail G. Doyle
摘要
This report describes mechanistic studies of the (salen)Co- and amine-cocatalyzed enantioselective ring opening of epoxides by fluoride. The kinetics of the reaction, as determined by in situ 19F NMR analysis, are characterized by apparent first-order dependence on (salen)Co. Substituent effects, nonlinear effects, and reactivity with a linked (salen)Co catalyst provide evidence for a rate-limiting, bimetallic ring-opening step. To account for these divergent data, we propose a mechanism wherein the active nucleophilic fluorine species is a cobalt fluoride that forms a resting-state dimer. Axial ligation of the amine cocatalyst to (salen)Co facilitates dimer dissociation and is the origin of the observed cooperativity. On the basis of these studies, we show that significant improvements in the rates, turnover numbers, and substrate scope of the fluoride ring-opening reactions can be realized through the use of a linked salen framework. Application of this catalyst system to a rapid (5 min) fluorination to generate the unlabeled analog of a known PET tracer, F-MISO, is reported.
科研通智能强力驱动
Strongly Powered by AbleSci AI