标杆管理
计算机科学
水准点(测量)
人工神经网络
计算机体系结构
网络拓扑
编码(集合论)
静态随机存取存储器
计算机工程
算法
计算机硬件
人工智能
计算机网络
业务
营销
集合(抽象数据类型)
大地测量学
程序设计语言
地理
作者
Pai-Yu Chen,Xiaochen Peng,Shimeng Yu
标识
DOI:10.1109/iedm.2017.8268337
摘要
NeuroSim+ is an integrated simulation framework for benchmarking synaptic devices and array architectures in terms of the system-level learning accuracy and hardware performance metrics. It has a hierarchical organization from the device level (transistor technology and memory cell models) to the circuit level (synaptic array architectures and neuron periphery) and then to the algorithm level (neural network topologies). In this work, we study the impact of the “analog” eNVM non-ideal device properties and benchmark the trade-offs of SRAM, digital and analog eNVM based array architectures for online learning and offline classification. The source code of NeuroSim+ version 1.0 is publicly available at https ://github. co m/neuro sim/MLP Neuro Sim.
科研通智能强力驱动
Strongly Powered by AbleSci AI