催化作用
氯苯
密度泛函理论
材料科学
催化燃烧
锰
分解
氧化铈
铈
吸附
燃烧
无机化学
纳米颗粒
化学工程
物理化学
纳米技术
化学
计算化学
有机化学
工程类
冶金
作者
Pei Zhao,Zhansheng Lu,Shantang Liu
标识
DOI:10.1166/jnn.2018.14660
摘要
Manganese oxide (MnOx) supported on CeO2 nanocubes (MnOx/CeO2) were synthesized and tested for the catalytic combustion of chlorobenzene (CB), which was taken as a model compound of chlorinated volatile organic compounds (CVOCs). The catalytic activity tests demonstrated that MnOx/CeO2 nanocube catalysts exhibited a catalytic activity significantly better than that of bare CeO2 nanocubes, indicating MnOx plays a significant role for CB oxidation. To illustrate the effect of MnOx on the CeO2 nanocubes, experimental and theoretical methods such as density functional theory (DFT) calculations were carried out. Experimental characterization testified that the introduction of MnOx to CeO2 nanocubes brought the facile reduction of cerium species, larger amount of Oα species and oxygen vacancies, which lead to the enhanced catalytic performance of MnOx/CeO2 nanocube. Furthermore, DFT calculations clearly validated that MnOx/CeO2 (100) models could form the oxygen vacancies more easily, and CB molecules were preferentially adsorbed on the MnOx/CeO2 (100) models than on the CeO2 (100) models, which facilitated the easier formation of C-O* bond; this facile bond formation enabled faster CB decomposition into COx, thereby a higher CB conversion on the MnOx/CeO2 (100) could be found. Therefore, the vital role of MnOx can be successfully elucidated by both experimental and theoretical methods. Hence, this finding can be utilized for enhanced catalytic performance of CeO2 nanocube catalysts for the CVOCs elimination.
科研通智能强力驱动
Strongly Powered by AbleSci AI