Printing Semiconductor–Insulator Polymer Bilayers for High‐Performance Coplanar Field‐Effect Transistors

材料科学 光电子学 晶体管 薄膜晶体管 栅极电介质 半导体 场效应晶体管 并五苯 绝缘体(电) 纳米技术 电气工程 图层(电子) 电压 工程类
作者
Laju Bu,Mengxing Hu,Wanlong Lu,Ziyu Wang,Guanghao Lu
出处
期刊:Advanced Materials [Wiley]
卷期号:30 (2) 被引量:49
标识
DOI:10.1002/adma.201704695
摘要

Abstract Source–semiconductor–drain coplanar transistors with an organic semiconductor layer located within the same plane of source/drain electrodes are attractive for next‐generation electronics, because they could be used to reduce material consumption, minimize parasitic leakage current, avoid cross‐talk among different devices, and simplify the fabrication process of circuits. Here, a one‐step, drop‐casting‐like printing method to realize a coplanar transistor using a model semiconductor/insulator [poly(3‐hexylthiophene) (P3HT)/polystyrene (PS)] blend is developed. By manipulating the solution dewetting dynamics on the metal electrode and SiO 2 dielectric, the solution within the channel region is selectively confined, and thus make the top surface of source/drain electrodes completely free of polymers. Subsequently, during solvent evaporation, vertical phase separation between P3HT and PS leads to a semiconductor–insulator bilayer structure, contributing to an improved transistor performance. Moreover, this coplanar transistor with semiconductor–insulator bilayer structure is an ideal system for injecting charges into the insulator via gate‐stress, and the thus‐formed PS electret layer acts as a “nonuniform floating gate” to tune the threshold voltage and effective mobility of the transistors. Effective field‐effect mobility higher than 1 cm 2 V −1 s −1 with an on/off ratio > 10 7 is realized, and the performances are comparable to those of commercial amorphous silicon transistors. This coplanar transistor simplifies the fabrication process of corresponding circuits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CyrusSo524应助祁郁郁采纳,获得10
刚刚
李健的小迷弟应助祁郁郁采纳,获得10
刚刚
刚刚
刚刚
Orange应助figshare采纳,获得10
2秒前
小麻花发布了新的文献求助30
2秒前
早睡早起完成签到,获得积分10
2秒前
2秒前
空空完成签到,获得积分10
3秒前
廖ll完成签到,获得积分10
3秒前
3秒前
Baraka发布了新的文献求助10
3秒前
吃点水果保护局完成签到 ,获得积分10
4秒前
wang666应助swordlee采纳,获得30
4秒前
4秒前
小天应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得30
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
6秒前
所所应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
认真平蝶完成签到 ,获得积分10
6秒前
6秒前
lj-TJUT发布了新的文献求助10
8秒前
狂野鞋垫完成签到 ,获得积分10
8秒前
菜鸟队长发布了新的文献求助10
8秒前
lyy完成签到 ,获得积分10
9秒前
9秒前
天真忆文发布了新的文献求助30
9秒前
9秒前
qzw完成签到,获得积分10
10秒前
深情安青应助开放的大侠采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543968
求助须知:如何正确求助?哪些是违规求助? 3121180
关于积分的说明 9345951
捐赠科研通 2819266
什么是DOI,文献DOI怎么找? 1550071
邀请新用户注册赠送积分活动 722375
科研通“疑难数据库(出版商)”最低求助积分说明 713169