Overlapping Brain Circuits for Homeostatic and Hedonic Feeding

神经科学 愉快 生物神经网络 感觉系统 平衡 奖励制度 能量稳态 感知 食物摄入量 稳态可塑性 心理学 生物 肥胖 变质塑性 突触可塑性 内分泌学 细胞生物学 受体 生物化学
作者
Mark A. Rossi,Garret D. Stuber
出处
期刊:Cell Metabolism [Elsevier]
卷期号:27 (1): 42-56 被引量:291
标识
DOI:10.1016/j.cmet.2017.09.021
摘要

Central regulation of food intake is a key mechanism contributing to energy homeostasis. Many neural circuits that are thought to orchestrate feeding behavior overlap with the brain’s reward circuitry both anatomically and functionally. Manipulation of numerous neural pathways can simultaneously influence food intake and reward. Two key systems underlying these processes—those controlling homeostatic and hedonic feeding—are often treated as independent. Homeostatic feeding is necessary for basic metabolic processes and survival, while hedonic feeding is driven by sensory perception or pleasure. Despite this distinction, their functional and anatomical overlap implies considerable interaction that is often overlooked. Here, we argue that the neurocircuits controlling homeostatic feeding and hedonic feeding are not completely dissociable given the current data and urge researchers to assess behaviors extending beyond food intake in investigations of the neural control of feeding. Central regulation of food intake is a key mechanism contributing to energy homeostasis. Many neural circuits that are thought to orchestrate feeding behavior overlap with the brain’s reward circuitry both anatomically and functionally. Manipulation of numerous neural pathways can simultaneously influence food intake and reward. Two key systems underlying these processes—those controlling homeostatic and hedonic feeding—are often treated as independent. Homeostatic feeding is necessary for basic metabolic processes and survival, while hedonic feeding is driven by sensory perception or pleasure. Despite this distinction, their functional and anatomical overlap implies considerable interaction that is often overlooked. Here, we argue that the neurocircuits controlling homeostatic feeding and hedonic feeding are not completely dissociable given the current data and urge researchers to assess behaviors extending beyond food intake in investigations of the neural control of feeding. Tightly regulating energy intake is necessary for survival of all animals. A critical component of energy balance is the ability to obtain and consume food sufficient to meet ongoing metabolic demands. The neurocircuits controlling feeding behavior are thought to be disrupted in pathologies of hypophagia (e.g., resulting in anorexia nervosa) or hyperphagia (e.g., resulting in obesity). In other pathologies, such as substance abuse, the neural circuits traditionally thought to control feeding may be co-opted by drugs of abuse, suggesting overlapping feeding and reward circuitry within the brain. The cells most closely linked to facilitating feeding are intermingled with the cells most closely linked to reward-guided behavior. A comprehensive understanding of these systems will greatly facilitate our understanding of pathologies that rely on feeding and reward circuits. Here, we pose the question of whether such circuits are indeed dissociable and should ultimately be considered separately given the current data and accepted approaches. For more than half a century, scientists have struggled to understand the intermingled neural basis of reward and feeding (Berridge, 1996Berridge K.C. Food reward: brain substrates of wanting and liking.Neurosci. Biobehav. Rev. 1996; 20: 1-25Crossref PubMed Scopus (1183) Google Scholar, Hoebel and Teitelbaum, 1962Hoebel B.G. Teitelbaum P. Hypothalamic control of feeding and self-stimulation.Science. 1962; 135: 375-377Crossref PubMed Google Scholar, Margules and Olds, 1962Margules D.L. Olds J. Identical “feeding” and “rewarding” systems in the lateral hypothalamus of rats.Science. 1962; 135: 374-375Crossref PubMed Google Scholar, Wise, 2004Wise R.A. Dopamine, learning and motivation.Nat. Rev. Neurosci. 2004; 5: 483-494Crossref PubMed Google Scholar). Despite early recognition that feeding and reward are intimately linked, these two topics have frequently been examined in isolation for practical reasons. For example, studies have looked at the contribution of particular brain regions to body weight regulation, energy expenditure, and food intake (for review, see Elmquist et al., 1999Elmquist J.K. Elias C.F. Saper C.B. From lesions to leptin: hypothalamic control of food intake and body weight.Neuron. 1999; 22: 221-232Abstract Full Text Full Text PDF PubMed Google Scholar, Morton et al., 2006Morton G.J. Cummings D.E. Baskin D.G. Barsh G.S. Schwartz M.W. Central nervous system control of food intake and body weight.Nature. 2006; 443: 289-295Crossref PubMed Scopus (1606) Google Scholar), while others focused on the role of neuronal populations in reward-guided behavior (Corbett and Wise, 1980Corbett D. Wise R.A. Intracranial self-stimulation in relation to the ascending dopaminergic systems of the midbrain: a moveable electrode mapping study.Brain Res. 1980; 185: 1-15Crossref PubMed Scopus (168) Google Scholar, Morris et al., 2006Morris G. Nevet A. Arkadir D. Vaadia E. Bergman H. Midbrain dopamine neurons encode decisions for future action.Nat. Neurosci. 2006; 9: 1057-1063Crossref PubMed Scopus (297) Google Scholar, Schultz, 2002Schultz W. Getting formal with dopamine and reward.Neuron. 2002; 36: 241-263Abstract Full Text Full Text PDF PubMed Scopus (1743) Google Scholar), but relatively few have considered the two together (Castro et al., 2015Castro D.C. Cole S.L. Berridge K.C. Lateral hypothalamus, nucleus accumbens, and ventral pallidum roles in eating and hunger: interactions between homeostatic and reward circuitry.Front. Syst. Neurosci. 2015; 9: 90Crossref PubMed Scopus (110) Google Scholar, Saper et al., 2002Saper C.B. Chou T.C. Elmquist J.K. The need to feed: homeostatic and hedonic control of eating.Neuron. 2002; 36: 199-211Abstract Full Text Full Text PDF PubMed Scopus (775) Google Scholar) (Table 1). Despite much progress toward understanding how certain parts of the brain contribute to either feeding or reward, questions of motivated behavior continue to be framed in terms of homeostatic feeding—food intake that is necessary to maintain typical body weight and metabolic function—or hedonic feeding—food intake driven by sensory perception or pleasure. These distinctions can be helpful to guide first-pass efforts to define basic functional elements of integrated neural circuits; however, homeostatic and hedonic feeding systems are likely both activated during all feeding situations. The degree to which each is activated may shift depending on the type of food (i.e., palatable or aversive) and the physiological state of the animal (i.e., starvation).Table 1Acute Manipulations of Molecularly and Anatomically Defined Neurons that Influence Food Intake Also Affect Appetitive BehaviorAreaCell TypeManipulationFood IntakeAppetitive BehaviorReferencesArcAgRPChR2, Gq, Gs, TRPV1↑++/–Aponte et al., 2011Aponte Y. Atasoy D. Sternson S.M. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training.Nat. Neurosci. 2011; 14: 351-355Crossref PubMed Scopus (546) Google Scholar, Krashes et al., 2011Krashes M.J. Koda S. Ye C. Rogan S.C. Adams A.C. Cusher D.S. Maratos-Flier E. Roth B.L. Lowell B.B. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice.J. Clin. Invest. 2011; 121: 1424-1428Crossref PubMed Scopus (611) Google Scholar, Atasoy et al., 2012Atasoy D. Betley J.N. Su H.H. Sternson S.M. Deconstruction of a neural circuit for hunger.Nature. 2012; 488: 172-177Crossref PubMed Scopus (459) Google Scholar, Betley et al., 2015Betley J.N. Xu S. Cao Z.F.H. Gong R. Magnus C.J. Yu Y. Sternson S.M. Neurons for hunger and thirst transmit a negative-valence teaching signal.Nature. 2015; 521: 180-185Crossref PubMed Scopus (245) Google Scholar, Dietrich et al., 2015Dietrich M.O. Zimmer M.R. Bober J. Horvath T.L. Hypothalamic Agrp neurons drive stereotypic behaviors beyond feeding.Cell. 2015; 160: 1222-1232Abstract Full Text Full Text PDF PubMed Scopus (82) Google Scholar, Chen et al., 2016Chen Y. Lin Y.C. Zimmerman C.A. Essner R.A. Knight Z.A. Hunger neurons drive feeding through a sustained, positive reinforcement signal.Elife. 2016; 5https://doi.org/10.7554/eLife.18640Crossref Scopus (57) Google Scholar, Nakajima et al., 2016Nakajima K. Cui Z. Li C. Meister J. Cui Y. Fu O. Smith A.S. Jain S. Lowell B.B. Krashes M.J. Wess J. Gs-coupled GPCR signalling in AgRP neurons triggers sustained increase in food intake.Nat. Commun. 2016; 7: 10268Crossref PubMed Scopus (46) Google ScholarAgRPGi↓–?Krashes et al., 2011Krashes M.J. Koda S. Ye C. Rogan S.C. Adams A.C. Cusher D.S. Maratos-Flier E. Roth B.L. Lowell B.B. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice.J. Clin. Invest. 2011; 121: 1424-1428Crossref PubMed Scopus (611) Google ScholarPOMCChR2 (extended), Gq (chronic)↑–?Aponte et al., 2011Aponte Y. Atasoy D. Sternson S.M. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training.Nat. Neurosci. 2011; 14: 351-355Crossref PubMed Scopus (546) Google Scholar, Zhan et al., 2013Zhan C. Zhou J. Feng Q. Zhang J.E. Lin S. Bao J. Wu P. Luo M. Acute and long-term suppression of feeding behavior by POMC neurons in the brainstem and hypothalamus, respectively.J. Neurosci. 2013; 33: 3624-3632Crossref PubMed Scopus (178) Google ScholarPOMCGi (24 hr intake)↓+?Atasoy et al., 2012Atasoy D. Betley J.N. Su H.H. Sternson S.M. Deconstruction of a neural circuit for hunger.Nature. 2012; 488: 172-177Crossref PubMed Scopus (459) Google ScholarTHChIEF↑+?Zhang and van den Pol, 2016Zhang X. van den Pol A.N. Hypothalamic arcuate nucleus tyrosine hydroxylase neurons play orexigenic role in energy homeostasis.Nat. Neurosci. 2016; 19: 1341-1347Crossref PubMed Scopus (57) Google ScholarVglut2Gq↑–?Fenselau et al., 2017Fenselau H. Campbell J.N. Verstegen A.M. Madara J.C. Xu J. Shah B.P. Resch J.M. Yang Z. Mandelblat-Cerf Y. Livneh Y. Lowell B.B. A rapidly acting glutamatergic ARC→PVH satiety circuit postsynaptically regulated by α-MSH.Nat. Neurosci. 2017; 20: 42-51Crossref PubMed Scopus (80) Google ScholarVglut2Gi↓+?Fenselau et al., 2017Fenselau H. Campbell J.N. Verstegen A.M. Madara J.C. Xu J. Shah B.P. Resch J.M. Yang Z. Mandelblat-Cerf Y. Livneh Y. Lowell B.B. A rapidly acting glutamatergic ARC→PVH satiety circuit postsynaptically regulated by α-MSH.Nat. Neurosci. 2017; 20: 42-51Crossref PubMed Scopus (80) Google ScholarOxtrGq↑–?Fenselau et al., 2017Fenselau H. Campbell J.N. Verstegen A.M. Madara J.C. Xu J. Shah B.P. Resch J.M. Yang Z. Mandelblat-Cerf Y. Livneh Y. Lowell B.B. A rapidly acting glutamatergic ARC→PVH satiety circuit postsynaptically regulated by α-MSH.Nat. Neurosci. 2017; 20: 42-51Crossref PubMed Scopus (80) Google ScholarPVNSIM1Gi↓+?Atasoy et al., 2012Atasoy D. Betley J.N. Su H.H. Sternson S.M. Deconstruction of a neural circuit for hunger.Nature. 2012; 488: 172-177Crossref PubMed Scopus (459) Google ScholarTRHGq↑+?Krashes et al., 2014Krashes M.J. Shah B.P. Madara J.C. Olson D.P. Strochlic D.E. Garfield A.S. Vong L. Pei H. Watabe-Uchida M. Uchida N. et al.An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger.Nature. 2014; 507: 238-242Crossref PubMed Scopus (259) Google ScholarPACAPGq, Gs↑+?Krashes et al., 2014Krashes M.J. Shah B.P. Madara J.C. Olson D.P. Strochlic D.E. Garfield A.S. Vong L. Pei H. Watabe-Uchida M. Uchida N. et al.An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger.Nature. 2014; 507: 238-242Crossref PubMed Scopus (259) Google Scholar, Nakajima et al., 2016Nakajima K. Cui Z. Li C. Meister J. Cui Y. Fu O. Smith A.S. Jain S. Lowell B.B. Krashes M.J. Wess J. Gs-coupled GPCR signalling in AgRP neurons triggers sustained increase in food intake.Nat. Commun. 2016; 7: 10268Crossref PubMed Scopus (46) Google ScholarMC4RGq↑–?Garfield et al., 2015Garfield A.S. Li C. Madara J.C. Shah B.P. Webber E. Steger J.S. Campbell J.N. Gavrilova O. Lee C.E. Olson D.P. et al.A neural basis for melanocortin-4 receptor-regulated appetite.Nat. Neurosci. 2015; 18: 863-871Crossref PubMed Scopus (160) Google ScholarMC4RGi↓+?Garfield et al., 2015Garfield A.S. Li C. Madara J.C. Shah B.P. Webber E. Steger J.S. Campbell J.N. Gavrilova O. Lee C.E. Olson D.P. et al.A neural basis for melanocortin-4 receptor-regulated appetite.Nat. Neurosci. 2015; 18: 863-871Crossref PubMed Scopus (160) Google ScholarCeAPKCδGi, eNpHR3.0↓+?Cai et al., 2014aCai H. Haubensak W. Anthony T.E. Anderson D.J. Central amygdala PKC-δ(+) neurons mediate the influence of multiple anorexigenic signals.Nat. Neurosci. 2014; 17: 1240-1248Crossref PubMed Scopus (143) Google ScholarPKCδChR2↑–/Cai et al., 2014aCai H. Haubensak W. Anthony T.E. Anderson D.J. Central amygdala PKC-δ(+) neurons mediate the influence of multiple anorexigenic signals.Nat. Neurosci. 2014; 17: 1240-1248Crossref PubMed Scopus (143) Google ScholarTac2ChR2↑/?Cai et al., 2014aCai H. Haubensak W. Anthony T.E. Anderson D.J. Central amygdala PKC-δ(+) neurons mediate the influence of multiple anorexigenic signals.Nat. Neurosci. 2014; 17: 1240-1248Crossref PubMed Scopus (143) Google ScholarCrfChR2↑/?Cai et al., 2014aCai H. Haubensak W. Anthony T.E. Anderson D.J. Central amygdala PKC-δ(+) neurons mediate the influence of multiple anorexigenic signals.Nat. Neurosci. 2014; 17: 1240-1248Crossref PubMed Scopus (143) Google ScholarSsteArch3.0↓/?Kim et al., 2017Kim J. Zhang X. Muralidhar S. LeBlanc S.A. Tonegawa S. Basolateral to central amygdala neural circuits for appetitive behaviors.Neuron. 2017; 93: 1464-1479.e5Abstract Full Text Full Text PDF PubMed Scopus (99) Google ScholarCrf/Nts/Tac2eArch3.0↓/?Kim et al., 2017Kim J. Zhang X. Muralidhar S. LeBlanc S.A. Tonegawa S. Basolateral to central amygdala neural circuits for appetitive behaviors.Neuron. 2017; 93: 1464-1479.e5Abstract Full Text Full Text PDF PubMed Scopus (99) Google ScholarNtseArch3.0↓/?Kim et al., 2017Kim J. Zhang X. Muralidhar S. LeBlanc S.A. Tonegawa S. Basolateral to central amygdala neural circuits for appetitive behaviors.Neuron. 2017; 93: 1464-1479.e5Abstract Full Text Full Text PDF PubMed Scopus (99) Google ScholarTac2eArch3.0↓/?Kim et al., 2017Kim J. Zhang X. Muralidhar S. LeBlanc S.A. Tonegawa S. Basolateral to central amygdala neural circuits for appetitive behaviors.Neuron. 2017; 93: 1464-1479.e5Abstract Full Text Full Text PDF PubMed Scopus (99) Google ScholarVgatChR2↑+?Han et al., 2017Han W. Tellez L.A. Rangel Jr., M.J. Motta S.C. Zhang X. Perez I.O. Canteras N.S. Shammah-Lagnado S.J. van den Pol A.N. de Araujo I.E. Integrated control of predatory hunting by the central nucleus of the amygdala.Cell. 2017; 168: 311-324.e18Abstract Full Text Full Text PDF PubMed Scopus (68) Google ScholarHtr2aChR2↑++Douglass et al., 2017Douglass A.M. Kucukdereli H. Ponserre M. Markovic M. Gründemann J. Strobel C. Alcala Morales P.L. Conzelmann K.K. Lüthi A. Klein R. Central amygdala circuits modulate food consumption through a positive-valence mechanism.Nat. Neurosci. 2017; 20: 1384-1394Crossref PubMed Scopus (56) Google ScholarHtr2aeNpHR3.0↓–/Douglass et al., 2017Douglass A.M. Kucukdereli H. Ponserre M. Markovic M. Gründemann J. Strobel C. Alcala Morales P.L. Conzelmann K.K. Lüthi A. Klein R. Central amygdala circuits modulate food consumption through a positive-valence mechanism.Nat. Neurosci. 2017; 20: 1384-1394Crossref PubMed Scopus (56) Google ScholarPBNCGRPGq, ChR2↑–?Carter et al., 2013Carter M.E. Soden M.E. Zweifel L.S. Palmiter R.D. Genetic identification of a neural circuit that suppresses appetite.Nature. 2013; 503: 111-114Crossref PubMed Scopus (268) Google ScholarCGRPGi↓+?Carter et al., 2013Carter M.E. Soden M.E. Zweifel L.S. Palmiter R.D. Genetic identification of a neural circuit that suppresses appetite.Nature. 2013; 503: 111-114Crossref PubMed Scopus (268) Google ScholarMC4RGi↓+?Garfield et al., 2015Garfield A.S. Li C. Madara J.C. Shah B.P. Webber E. Steger J.S. Campbell J.N. Gavrilova O. Lee C.E. Olson D.P. et al.A neural basis for melanocortin-4 receptor-regulated appetite.Nat. Neurosci. 2015; 18: 863-871Crossref PubMed Scopus (160) Google ScholarLHAMC4RGq↑/?Garfield et al., 2015Garfield A.S. Li C. Madara J.C. Shah B.P. Webber E. Steger J.S. Campbell J.N. Gavrilova O. Lee C.E. Olson D.P. et al.A neural basis for melanocortin-4 receptor-regulated appetite.Nat. Neurosci. 2015; 18: 863-871Crossref PubMed Scopus (160) Google ScholarVglut2ChR2↑––Jennings et al., 2013aJennings J.H. Rizzi G. Stamatakis A.M. Ung R.L. Stuber G.D. The inhibitory circuit architecture of the lateral hypothalamus orchestrates feeding.Science. 2013; 341: 1517-1521Crossref PubMed Scopus (206) Google ScholarVglut2eArch3.0↓++Jennings et al., 2013aJennings J.H. Rizzi G. Stamatakis A.M. Ung R.L. Stuber G.D. The inhibitory circuit architecture of the lateral hypothalamus orchestrates feeding.Science. 2013; 341: 1517-1521Crossref PubMed Scopus (206) Google ScholarVgatGq, ChR2↑++Jennings et al., 2015Jennings J.H. Ung R.L. Resendez S.L. Stamatakis A.M. Taylor J.G. Huang J. Veleta K. Kantak P.A. Aita M. Shilling-Scrivo K. et al.Visualizing hypothalamic network dynamics for appetitive and consummatory behaviors.Cell. 2015; 160: 516-527Abstract Full Text Full Text PDF PubMed Scopus (215) Google Scholar, Navarro et al., 2016Navarro M. Olney J.J. Burnham N.W. Mazzone C.M. Lowery-Gionta E.G. Pleil K.E. Kash T.L. Thiele T.E. Lateral hypothalamus GABAergic neurons modulate consummatory behaviors regardless of the caloric content or biological relevance of the consumed stimuli.Neuropsychopharmacology. 2016; 41: 1505-1512Crossref PubMed Google ScholarVgatGi, eArch3.0↓––Jennings et al., 2015Jennings J.H. Ung R.L. Resendez S.L. Stamatakis A.M. Taylor J.G. Huang J. Veleta K. Kantak P.A. Aita M. Shilling-Scrivo K. et al.Visualizing hypothalamic network dynamics for appetitive and consummatory behaviors.Cell. 2015; 160: 516-527Abstract Full Text Full Text PDF PubMed Scopus (215) Google Scholar, Navarro et al., 2016Navarro M. Olney J.J. Burnham N.W. Mazzone C.M. Lowery-Gionta E.G. Pleil K.E. Kash T.L. Thiele T.E. Lateral hypothalamus GABAergic neurons modulate consummatory behaviors regardless of the caloric content or biological relevance of the consumed stimuli.Neuropsychopharmacology. 2016; 41: 1505-1512Crossref PubMed Google ScholarOrexinGq↑+?Inutsuka et al., 2014Inutsuka A. Inui A. Tabuchi S. Tsunematsu T. Lazarus M. Yamanaka A. Concurrent and robust regulation of feeding behaviors and metabolism by orexin neurons.Neuropharmacology. 2014; 85: 451-460Crossref PubMed Scopus (64) Google ScholarVTAVgatChR2↑––Tan et al., 2012Tan K.R. Yvon C. Turiault M. Mirzabekov J.J. Doehner J. Labouèbe G. Deisseroth K. Tye K.M. Lüscher C. GABA neurons of the VTA drive conditioned place aversion.Neuron. 2012; 73: 1173-1183Abstract Full Text Full Text PDF PubMed Scopus (318) Google Scholar, van Zessen et al., 2012van Zessen R. Phillips J.L. Budygin E.A. Stuber G.D. Activation of VTA GABA neurons disrupts reward consumption.Neuron. 2012; 73: 1184-1194Abstract Full Text Full Text PDF PubMed Scopus (298) Google ScholarNAcD1ReArch3.0↓+?O’Connor et al., 2015O’Connor E.C. Kremer Y. Lefort S. Harada M. Pascoli V. Rohner C. Lüscher C. Accumbal D1R neurons projecting to lateral hypothalamus authorize feeding.Neuron. 2015; 88: 553-564Abstract Full Text Full Text PDF PubMed Scopus (84) Google ScholarD2ReArch3.0↓/?O’Connor et al., 2015O’Connor E.C. Kremer Y. Lefort S. Harada M. Pascoli V. Rohner C. Lüscher C. Accumbal D1R neurons projecting to lateral hypothalamus authorize feeding.Neuron. 2015; 88: 553-564Abstract Full Text Full Text PDF PubMed Scopus (84) Google ScholarPFCD1RChR2↑+?Land et al., 2014Land B.B. Narayanan N.S. Liu R.J. Gianessi C.A. Brayton C.E. Grimaldi D.M. Sarhan M. Guarnieri D.J. Deisseroth K. Aghajanian G.K. DiLeone R.J. Medial prefrontal D1 dopamine neurons control food intake.Nat. Neurosci. 2014; 17: 248-253Crossref PubMed Scopus (89) Google ScholarD1ReNpHR3.0↓–?Land et al., 2014Land B.B. Narayanan N.S. Liu R.J. Gianessi C.A. Brayton C.E. Grimaldi D.M. Sarhan M. Guarnieri D.J. Deisseroth K. Aghajanian G.K. DiLeone R.J. Medial prefrontal D1 dopamine neurons control food intake.Nat. Neurosci. 2014; 17: 248-253Crossref PubMed Scopus (89) Google ScholarAppetitive behavior was limited to place preference and self-stimulation behavior. Note that manipulations are grouped by whether they putatively increase (↑) or decrease (↓) neuronal output, but different manipulations that have similar net effects on cellular activity are not necessarily equivalent to each other.+, increase; –, decrease; /, no effect; +/–, increase or decrease depending on experimental conditions; ?, effect unknown.Arc, arcuate nucleus of the hypothalamus; AgRP, agouti-related peptide; CeA, central nucleus of the hypothalamus; CGRP, calcitonin gene-related peptide; ChIEF, fast-closing mutated channelrhodopsin hybrid; ChR2, channelrhodopsin-2; Crf, corticotrophin releasing factor; D1R, d1-like dopamine receptor; D2R, d2-like dopamine receptor; eArch3.0, archaerhodopsin-3.0; eNpHR3.0, halorhodopsin-3.0; Gq, hM3Dq (Gq-coupled designer receptor exclusively activated by designer drug); Gi, hM4Dq (Gi-coupled designer receptor exclusively activated by designer drug); Htr2a, serotonin receptor 2a; Gs, Gs-coupled designer receptor exclusively activated by designer drug; LHA, lateral hypothalamic area; MC4R, melanocortin 4 receptor; NAc, nucleus accumbens; Oxtr, oxytocin receptor; PACAP, pituitary adenylate cyclase-activating polypeptide; PBN, parabrachial nucleus; PFC, prefrontal cortex; PKCδ, protein kinase C delta type; POMC, proopiomelanocortin; PVN, paraventricular nucleus of the hypothalamus; Sim1, single-minded 1; Sst, somatostatin; Tac2, tachykinin 2; TRH, thyrotropin-releasing hormone; TRPV1, transient receptor potential cation channel subfamily V member 1; Vgat, vesicular GABA transporter; Vglut2, vesicular glutamate transporter 2; VTA, ventral tegmental area. Open table in a new tab Appetitive behavior was limited to place preference and self-stimulation behavior. Note that manipulations are grouped by whether they putatively increase (↑) or decrease (↓) neuronal output, but different manipulations that have similar net effects on cellular activity are not necessarily equivalent to each other. +, increase; –, decrease; /, no effect; +/–, increase or decrease depending on experimental conditions; ?, effect unknown. Arc, arcuate nucleus of the hypothalamus; AgRP, agouti-related peptide; CeA, central nucleus of the hypothalamus; CGRP, calcitonin gene-related peptide; ChIEF, fast-closing mutated channelrhodopsin hybrid; ChR2, channelrhodopsin-2; Crf, corticotrophin releasing factor; D1R, d1-like dopamine receptor; D2R, d2-like dopamine receptor; eArch3.0, archaerhodopsin-3.0; eNpHR3.0, halorhodopsin-3.0; Gq, hM3Dq (Gq-coupled designer receptor exclusively activated by designer drug); Gi, hM4Dq (Gi-coupled designer receptor exclusively activated by designer drug); Htr2a, serotonin receptor 2a; Gs, Gs-coupled designer receptor exclusively activated by designer drug; LHA, lateral hypothalamic area; MC4R, melanocortin 4 receptor; NAc, nucleus accumbens; Oxtr, oxytocin receptor; PACAP, pituitary adenylate cyclase-activating polypeptide; PBN, parabrachial nucleus; PFC, prefrontal cortex; PKCδ, protein kinase C delta type; POMC, proopiomelanocortin; PVN, paraventricular nucleus of the hypothalamus; Sim1, single-minded 1; Sst, somatostatin; Tac2, tachykinin 2; TRH, thyrotropin-releasing hormone; TRPV1, transient receptor potential cation channel subfamily V member 1; Vgat, vesicular GABA transporter; Vglut2, vesicular glutamate transporter 2; VTA, ventral tegmental area. The anatomical interconnectedness, as well as the functional consequences of perturbation, of classical homeostatic and hedonic neurocircuits suggests that they contribute to a more complex motivational system. With a few notable exceptions discussed below, optogenetic or chemogenetic activation of appetite-stimulating cells often produces rewarding phenotypes (a preference or willingness to work for stimulation), whereas activating appetite-inhibiting cells tends to be aversive (avoidance of stimulation) (Jennings et al., 2013aJennings J.H. Rizzi G. Stamatakis A.M. Ung R.L. Stuber G.D. The inhibitory circuit architecture of the lateral hypothalamus orchestrates feeding.Science. 2013; 341: 1517-1521Crossref PubMed Scopus (206) Google Scholar, Jennings et al., 2015Jennings J.H. Ung R.L. Resendez S.L. Stamatakis A.M. Taylor J.G. Huang J. Veleta K. Kantak P.A. Aita M. Shilling-Scrivo K. et al.Visualizing hypothalamic network dynamics for appetitive and consummatory behaviors.Cell. 2015; 160: 516-527Abstract Full Text Full Text PDF PubMed Scopus (215) Google Scholar). Here, we will discuss anatomical and functional evidence to support the claim that homeostatic and hedonic feeding circuits are not presently dissociable from one another. We have divided the relevant brain regions into three broad categories: ventricular, intermediate, and monoaminergic. Ventricular neurons are those cells that are positioned adjacent to the third ventricle, regulate food intake, densely express receptors for a variety of circulating hormones, and project to downstream “intermediate” targets. Intermediate neurons are those cells implicated in feeding that are positioned downstream of ventricular cells. Intermediate cell groups can provide synaptic feedback onto ventricular neurons and interact heavily with one another. Determining anatomical and physiological links between ventricular neurons and postsynaptic, molecularly defined intermediate neurons is still an active area of research, but we have included discussion of the evidence where available. Monoaminergic neurons are found downstream and positioned to receive input from intermediate neurons, but direct input from ventricular neurons is sparse (Figure 1). The functions of given cell groups appear to be relatively specific at the level of ventricular neurons; manipulations of these cells produce pronounced effects on energy homeostasis. Intermediate neurons have more general functions, contributing to reward and aversion as well as food intake and body weight regulation. At the most general level, monoaminergic neurons (i.e., mesolimbic dopamine neurons) are involved in arousal, movement, motivation, and many other adaptive functions. We consider each of these levels and how they contribute to feeding behavior in turn. The arrangement of neurons discussed here is one of many possible schemes that could be used when discussing complex neural systems. This simplified framework permits distillation of a rich literature, reaching back nearly a century, into a set of concepts that can be contained within a single manuscript. It is partially conceptual and does not imply that other connections do not exist between these brain regions. Although circulating hormones can directly affect cells throughout the brain, we have chosen hypothalamic ventricular cells as a starting point because they tend to express receptors for circulating feeding molecules such as insulin, leptin, and ghrelin more densely than do intermediate or monoaminergic structures (Hill et al., 1986Hill J.M. Lesniak M.A. Pert C.B. Roth J. Autoradiographic localization of insulin receptors in rat brain: prominence in olfactory and limbic areas.Neuroscience. 1986; 17: 1127-1138Crossref PubMed Scopus (330) Google Scholar, Scott et al., 2009Scott M.M. Lachey J.L. Sternson S.M. Lee C.E. Elias C.F. Friedman J.M. Elmquist J.K. Leptin targets in the mouse brain.J. Comp. Neurol. 2009; 514: 518-532Crossref PubMed Scopus (286) Google Scholar, Zigman et al., 2006Zigman J.M. Jones J.E. Lee C.E. Saper C.B. Elmquist J.K. Expression of ghrelin receptor mRNA in the rat and the mouse brain.J. Comp. Neurol. 2006; 494: 528-548Crossref PubMed Scopus (670) Google Scholar) and because they function most specifically in the regulation of feeding and related behaviors, although they likely have other important functions as well (discussed below). As with any classification system, there are limitations to this approach. In addition to signaling from peripheral hormones, ventricular neurons also receive synaptic input, originating primarily from intra-hypothalamic sources (Wang et al., 2015Wang D. He X. Zhao Z. Feng Q. Lin R. Sun Y. Ding T. Xu F. Luo M. Zhan C. Whole-brain mapping of the direct inputs and axonal projections of POMC and AgRP neurons.Front. Neuroanat. 2015; 9: 40Crossref PubMed Scopus (84) Google Scholar). However, whether the synaptic input reflects feedback mechanisms or whether it can independently drive activity is unclear. Moreover, the neuronal organization described in this review is a framework for understanding a common theme: neurons most closely related to homeostatic feeding directly and indirectly interface with circuits that influence reward and aversion. Finally, the cell types and projections discussed below represent only a subset of the cells that are known to exist within these regions. Other classes of cells may have unique molecular signatures, connectivity, and functions. The present discussion is limited to neurons that are known to be involved in feeding or reward processing, and functionally unrelated cell types and connections have been omitted for clarity. Molecularly defined cell types in the arcuate nucleus of the hypothalamus (Arc) are often targeted as an “entry point” to homeostatic feeding circuits because they are strongly influenced by peripheral signals and perturbation robustly influences food intake. These neurons are located in the hypothalamus along the third ventricle and express receptors for many circulating molecules associated with homeostatic feeding, including leptin, ghrelin, and insulin (Cone, 2005Cone R.D. Anatomy and regulation of the central melanocortin system.Nat. Neurosci. 2005; 8: 571-578Crossref PubMed Scopus (1015) Google Scholar, Hill et al., 1986Hill J.M. Lesniak M.A. Pert C.B. Roth J. Autora
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SCINEXUS完成签到,获得积分0
2秒前
成就乘云完成签到,获得积分10
2秒前
科目三三次郎完成签到 ,获得积分10
3秒前
科研通AI2S应助胡英宇采纳,获得10
3秒前
师大刘亦菲完成签到 ,获得积分10
4秒前
Cistone发布了新的文献求助10
4秒前
Jasper应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得30
7秒前
7秒前
Owen应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
0128lun应助科研通管家采纳,获得10
8秒前
pluto应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
syt完成签到,获得积分10
9秒前
须臾发布了新的文献求助10
9秒前
小九发布了新的文献求助10
9秒前
12秒前
14秒前
充电宝应助lisir采纳,获得10
16秒前
Ali发布了新的文献求助10
17秒前
Akim应助科研靓仔采纳,获得10
18秒前
22完成签到,获得积分10
18秒前
yyw完成签到 ,获得积分10
19秒前
美满沛芹发布了新的文献求助10
19秒前
21秒前
22秒前
Lin完成签到,获得积分20
23秒前
24秒前
乐观的乐松完成签到,获得积分20
24秒前
科目三应助22采纳,获得10
25秒前
欧小仙发布了新的文献求助10
26秒前
呼呼呼完成签到,获得积分10
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137328
求助须知:如何正确求助?哪些是违规求助? 2788413
关于积分的说明 7786262
捐赠科研通 2444571
什么是DOI,文献DOI怎么找? 1299936
科研通“疑难数据库(出版商)”最低求助积分说明 625680
版权声明 601023