缺少数据
插补(统计学)
数据挖掘
计算机科学
软件
数据集
点估计
统计
数学
机器学习
人工智能
程序设计语言
作者
Sandip Sinharay,Hal S. Stern,David Russell
出处
期刊:Psychological Methods
[American Psychological Association]
日期:2001-01-01
卷期号:6 (4): 317-329
被引量:491
标识
DOI:10.1037/1082-989x.6.4.317
摘要
This article provides a comprehensive review of multiple imputation (MI), a technique for analyzing data sets with missing values. Formally, MI is the process of replacing each missing data point with a set of m > 1 plausible values to generate m complete data sets. These complete data sets are then analyzed by standard statistical software, and the results combined, to give parameter estimates and standard errors that take into account the uncertainty due to the missing data values. This article introduces the idea behind MI, discusses the advantages of MI over existing techniques for addressing missing data, describes how to do MI for real problems, reviews the software available to implement MI, and discusses the results of a simulation study aimed at finding out how assumptions regarding the imputation model affect the parameter estimates provided by MI.
科研通智能强力驱动
Strongly Powered by AbleSci AI