A novel reversible image data hiding scheme based on pixel value ordering and dynamic pixel block partition

嵌入 像素 信息隐藏 失真(音乐) 块(置换群论) 图像(数学) 算法 峰值信噪比 计算机科学 数学 分拆(数论) 计算机视觉 人工智能 电信 组合数学 放大器 几何学 带宽(计算)
作者
Xiang Wang,Jing Ding,Qingqi Pei
出处
期刊:Information Sciences [Elsevier]
卷期号:310: 16-35 被引量:123
标识
DOI:10.1016/j.ins.2015.03.022
摘要

Recently, various efficient reversible data-hiding schemes based on pixel value ordering have been proposed for embedding messages into high-fidelity images. In these schemes, after dividing the cover image into equal-sized blocks, the pixels within a given block are ordered according to their values, and data embedding is achieved by modifying the maximum and minimum values of each block. For a given embedding capacity, the optimal block size is exhaustively searched so that the embedding distortion is minimized. These pixel value ordering-based schemes perform fairly well, especially for low embedding capacity. However, to obtain a larger embedding capacity, a smaller block size should be used, which usually leads to a dramatic quality degradation of the marked image. In this paper, to address this drawback and to enhance the performance of pixel value ordering-based embedding further, a novel reversible data hiding method is proposed. Instead of using equal-sized blocks, a dynamic blocking strategy is used to divide the cover image adaptively into various-sized blocks. Specifically, flat image areas are preferentially divided into smaller blocks to retain high embedding capacity, whereas rough areas are divided into larger blocks to avoid decreasing peak signal-to-noise ratio. As a result, the proposed scheme can provide a larger embedding capacity than current pixel value ordering-based schemes while keeping distortion low. The superiority of the proposed method is also experimentally verified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
愉快的访旋完成签到,获得积分10
刚刚
Alpha完成签到,获得积分10
1秒前
大大发布了新的文献求助30
1秒前
翠翠发布了新的文献求助10
2秒前
半山发布了新的文献求助10
3秒前
3秒前
天天快乐应助CO2采纳,获得10
3秒前
隐形曼青应助junzilan采纳,获得10
4秒前
Dksido发布了新的文献求助10
4秒前
5秒前
思源应助卓哥采纳,获得10
5秒前
mysci完成签到,获得积分10
8秒前
9秒前
Quzhengkai发布了新的文献求助10
10秒前
10秒前
11秒前
落寞晓灵完成签到,获得积分10
11秒前
ORAzzz应助翠翠采纳,获得20
12秒前
zoe完成签到,获得积分10
12秒前
习习应助学术小白采纳,获得10
12秒前
13秒前
14秒前
tianny关注了科研通微信公众号
15秒前
15秒前
CO2发布了新的文献求助10
15秒前
桐桐应助zhangscience采纳,获得10
16秒前
求助发布了新的文献求助10
17秒前
buno应助zoe采纳,获得10
18秒前
junzilan发布了新的文献求助10
18秒前
18秒前
细品岁月完成签到 ,获得积分10
18秒前
细心书蕾完成签到 ,获得积分10
19秒前
无花果应助l11x29采纳,获得10
21秒前
21秒前
老詹头发布了新的文献求助10
21秒前
思源应助叫滚滚采纳,获得10
22秒前
23秒前
刘歌完成签到 ,获得积分10
23秒前
阿巡完成签到,获得积分10
23秒前
Chen完成签到,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808