Equalizer: Dynamic Tuning of GPU Resources for Efficient Execution

计算机科学 线程(计算) 瓶颈 核(代数) 并行计算 并发 隐藏物 分布式计算 嵌入式系统 操作系统 数学 组合数学
作者
Ankit Sethia,Scott Mahlke
标识
DOI:10.1109/micro.2014.16
摘要

GPUs use thousands of threads to provide high performance and efficiency. In general, if one thread of a kernel uses one of the resources (compute, bandwidth, data cache) more heavily, there will be significant contention for that resource due to the large number of identical concurrent threads. This contention will eventually saturate the performance of the kernel due to contention for the bottleneck resource, while at the same time leaving other resources underutilized. To overcome this problem, a runtime system that can tune the hardware to match the characteristics of a kernel can effectively mitigate the imbalance between resource requirements of kernels and the hardware resources present on the GPU. We propose Equalizer, a low overhead hardware runtime system, that dynamically monitors the resource requirements of a kernel and manages the amount of on-chip concurrency, core frequency and memory frequency to adapt the hardware to best match the needs of the running kernel. Equalizer provides efficiency in two modes. Firstly, it can save energy without significant performance degradation by GPUs use thousands of threads to provide high performance and efficiency. In general, if one thread of a kernel uses one of the resources (compute, bandwidth, data cache) more heavily, there will be significant contention for that resource due to the large number of identical concurrent threads. This contention will eventually saturate the performance of the kernel due to contention for the bottleneck resource, while at the same time leaving other resources underutilized. To overcome this problem, a runtime system that can tune the hardware to match the characteristics of a kernel can effectively mitigate the imbalance between resource requirements of kernels and the hardware resources present on the GPU. We propose Equalizer, a low overhead hardware runtime system, that dynamically monitors the resource requirements of a kernel and manages the amount of on-chip concurrency, core frequency and memory frequency to adapt the hardware to best match the needs of the running kernel. Equalizer provides efficiency in two modes. Firstly, it can save energy without significant performance degradation by throttling under-utilized resources. Secondly, it can boost bottleneck resources to reduce contention and provide higher performance without significant energy increase. Across a spectrum of 27 kernels, Equalizer achieves 15% savings in energy mode and 22% speedup in performance mode. Throttling under-utilized resources. Secondly, it can boost bottleneck resources to reduce contention and provide higher performance without significant energy increase. Across a spectrum of 27 kernels, Equalizer achieves 15% savings in energy mode and 22% speedup in performance mode.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助Pengcheng采纳,获得10
刚刚
你说完成签到,获得积分10
刚刚
悲凉的老虎完成签到,获得积分10
1秒前
Edmund发布了新的文献求助10
1秒前
YuenYuen发布了新的文献求助10
2秒前
残剑月发布了新的文献求助10
2秒前
TTYYI发布了新的文献求助10
2秒前
公西白翠完成签到,获得积分10
3秒前
一只秤砣完成签到 ,获得积分10
3秒前
lym97完成签到 ,获得积分10
3秒前
3秒前
perdgs发布了新的文献求助10
4秒前
5秒前
5秒前
小米应助momo采纳,获得10
6秒前
英俊的铭应助痴情的尔岚采纳,获得10
6秒前
YuenYuen完成签到,获得积分10
6秒前
7秒前
7秒前
破空完成签到,获得积分10
8秒前
hyw完成签到,获得积分10
8秒前
个性语堂发布了新的文献求助10
8秒前
8秒前
SU Edward完成签到,获得积分10
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
朴素完成签到 ,获得积分10
11秒前
赤练仙子完成签到,获得积分10
11秒前
11秒前
Pengcheng发布了新的文献求助10
12秒前
12秒前
keep发布了新的文献求助10
12秒前
睡洋洋完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
DN完成签到,获得积分10
13秒前
13秒前
安息香发布了新的文献求助10
13秒前
13秒前
坦率白竹发布了新的文献求助10
13秒前
cc发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718168
求助须知:如何正确求助?哪些是违规求助? 5250844
关于积分的说明 15284812
捐赠科研通 4868418
什么是DOI,文献DOI怎么找? 2614132
邀请新用户注册赠送积分活动 1564020
关于科研通互助平台的介绍 1521476