牙周纤维
小RNA
转染
细胞外基质
细胞生物学
生物
报告基因
基因表达
韧带
基因
基因表达调控
分子生物学
解剖
遗传学
医学
牙科
作者
Yinghua Chen,Arshad Mohammed,Maysaa Oubaidin,Carla A. Evans,Xiaofeng Zhou,Xianghong Luan,Thomas G.H. Diekwisch,Phimon Atsawasuwan
出处
期刊:Gene
[Elsevier]
日期:2015-07-01
卷期号:566 (1): 13-17
被引量:47
标识
DOI:10.1016/j.gene.2015.03.055
摘要
MicroRNAs (miRs) play an important role in the development and remodeling of tissues through the regulation of large cohorts of extracellular matrix (ECM) genes. The purpose of the present study was to determine the response of miR-29 family expression to loading forces and their effects on ECM gene expression in periodontal ligament cells, the key effector cell population during orthodontic tooth movement. In a comparison between miRs from human periodontal ligament cells (PDLCs) and alveolar bone cells (ABCs) from healthy human subjects, the ABC cohort of miRs was substantially greater than the corresponding PDLC cohort. Cyclic mechanical stretch forces at 12% deformation at 0.1 Hz for 24 h decreased expression of miR-29 family member miRs about 0.5 fold while 2 g/cm2 compression force for 24 h increased miR-29 family member expression in PDLCs 1.8–4 folds. Cyclic stretch up-regulated major ECM genes in PDLCs, such as COL1A1, COL3A1 and COL5A1, while the compression force resulted in a down-regulation of these ECM genes. Direct interactions of miR-29 and Col1a1, Col3a1 and Col5a1 were confirmed using a dual luciferase reporter gene assay. In addition, transient transfection of a miR-29b mimic in mouse PDLCs down-regulated Col1a1, Col3a1 and Col5a1 while the transfection of miR-29b inhibitor up-regulated these genes compared to control transfection indicating that these target ECM genes directly responded to the altered level of miR-29b. These results provided a possible explanation for the effects of the miR-29 family on loaded PDLCS and their roles in extracellular matrix gene expression.
科研通智能强力驱动
Strongly Powered by AbleSci AI