Development of spectral indices for detecting and identifying plant diseases

甜菜 尾孢菌 高光谱成像 白粉病 遥感 叶斑病 植物病害 农学 生物 生物技术 地理 生物化学
作者
Anne‐Katrin Mahlein,Till Rumpf,Pascal Welke,H. W. Dehne,Lutz Plümer,Ulrike Steiner,Erich-Christian Oerke
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:128: 21-30 被引量:531
标识
DOI:10.1016/j.rse.2012.09.019
摘要

Abstract Spectral vegetation indices (SVIs) have been shown to be useful for an indirect detection of plant diseases. However, these indices have not been evaluated to detect or to differentiate between plant diseases on crop plants. The aim of this study was to develop specific spectral disease indices (SDIs) for the detection of diseases in crops. Sugar beet plants and the three leaf diseases Cercospora leaf spot, sugar beet rust and powdery mildew were used as model system. Hyperspectral signatures of healthy and diseased sugar beet leaves were assessed with a non-imaging spectroradiometer at different developing stages and disease severities of pathogens. Significant and most relevant wavelengths and two band normalized differences from 450 to 950 nm, describing the impact of a disease on sugar beet leaves were extracted from the data-set using the RELIEF-F algorithm. To develop hyperspectral indices for the detection of sugar beet diseases the best weighted combination of a single wavelength and a normalized wavelength difference was exhaustively searched testing all possible combinations. The optimized disease indices were tested for their ability to detect and to classify healthy and diseased sugar beet leaves. With a high accuracy and sensitivity healthy sugar beet leaves and leaves, infected with Cercospora leaf spot, sugar beet rust and powdery mildew were classified (balanced classification accuracy: 89%, 92%, 87%, 85%, respectively). Spectral disease indices were also successfully applied on hyperspectral imaging data and on non-imaging data from a sugar beet field. Specific disease indices will improve disease detection, identification and monitoring in precision agriculture applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大先生发布了新的文献求助30
刚刚
cui发布了新的文献求助20
刚刚
111完成签到 ,获得积分10
1秒前
1秒前
chenhang1894发布了新的文献求助10
3秒前
猫猫头完成签到,获得积分10
4秒前
小波完成签到 ,获得积分10
5秒前
六月的布丁完成签到 ,获得积分10
5秒前
6秒前
6秒前
杨杨杨发布了新的文献求助10
8秒前
qqq发布了新的文献求助10
9秒前
xuxingxing完成签到,获得积分10
9秒前
wonder完成签到 ,获得积分10
10秒前
10秒前
沈思卉完成签到,获得积分10
10秒前
bkagyin应助潘潘潘采纳,获得10
11秒前
12秒前
完美世界应助Grace采纳,获得10
13秒前
15秒前
吃了吃了发布了新的文献求助10
16秒前
19秒前
长安应助HS采纳,获得10
21秒前
英俊延恶发布了新的文献求助10
21秒前
zts完成签到,获得积分10
22秒前
23秒前
YY完成签到,获得积分10
23秒前
脸小呆呆发布了新的文献求助10
24秒前
24秒前
惊嵐应助Rcheap采纳,获得50
25秒前
希望天下0贩的0应助yyc采纳,获得10
25秒前
汉堡包应助Amy采纳,获得10
25秒前
yi完成签到 ,获得积分10
26秒前
叶志涛完成签到 ,获得积分10
26秒前
lv完成签到 ,获得积分10
26秒前
安安完成签到 ,获得积分10
27秒前
ly完成签到,获得积分10
27秒前
28秒前
十七完成签到 ,获得积分10
28秒前
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
Recent progress and new developments in post-combustion carbon-capture technology with reactive solvents 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538670
求助须知:如何正确求助?哪些是违规求助? 3116388
关于积分的说明 9325077
捐赠科研通 2814221
什么是DOI,文献DOI怎么找? 1546519
邀请新用户注册赠送积分活动 720607
科研通“疑难数据库(出版商)”最低求助积分说明 712086