亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development of spectral indices for detecting and identifying plant diseases

甜菜 尾孢菌 高光谱成像 白粉病 遥感 叶斑病 植物病害 农学 生物 生物技术 地理 生物化学
作者
Anne‐Katrin Mahlein,Till Rumpf,Pascal Welke,H. W. Dehne,Lutz Plümer,Ulrike Steiner,Erich-Christian Oerke
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:128: 21-30 被引量:555
标识
DOI:10.1016/j.rse.2012.09.019
摘要

Abstract Spectral vegetation indices (SVIs) have been shown to be useful for an indirect detection of plant diseases. However, these indices have not been evaluated to detect or to differentiate between plant diseases on crop plants. The aim of this study was to develop specific spectral disease indices (SDIs) for the detection of diseases in crops. Sugar beet plants and the three leaf diseases Cercospora leaf spot, sugar beet rust and powdery mildew were used as model system. Hyperspectral signatures of healthy and diseased sugar beet leaves were assessed with a non-imaging spectroradiometer at different developing stages and disease severities of pathogens. Significant and most relevant wavelengths and two band normalized differences from 450 to 950 nm, describing the impact of a disease on sugar beet leaves were extracted from the data-set using the RELIEF-F algorithm. To develop hyperspectral indices for the detection of sugar beet diseases the best weighted combination of a single wavelength and a normalized wavelength difference was exhaustively searched testing all possible combinations. The optimized disease indices were tested for their ability to detect and to classify healthy and diseased sugar beet leaves. With a high accuracy and sensitivity healthy sugar beet leaves and leaves, infected with Cercospora leaf spot, sugar beet rust and powdery mildew were classified (balanced classification accuracy: 89%, 92%, 87%, 85%, respectively). Spectral disease indices were also successfully applied on hyperspectral imaging data and on non-imaging data from a sugar beet field. Specific disease indices will improve disease detection, identification and monitoring in precision agriculture applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺利的尔芙完成签到,获得积分10
11秒前
24秒前
miki完成签到,获得积分10
48秒前
1分钟前
1分钟前
化爷发布了新的文献求助10
1分钟前
科研通AI5应助化爷采纳,获得10
1分钟前
天天快乐应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
111111完成签到 ,获得积分10
2分钟前
lztong完成签到,获得积分10
2分钟前
2分钟前
Scheduling完成签到 ,获得积分10
2分钟前
3分钟前
蛋白积聚完成签到,获得积分10
3分钟前
满意访冬完成签到,获得积分20
3分钟前
安静的飞珍完成签到,获得积分10
4分钟前
小丸子和zz完成签到 ,获得积分10
4分钟前
帅气的安柏完成签到,获得积分10
4分钟前
Jessiehuang完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
hqh发布了新的文献求助10
6分钟前
英姑应助hqh采纳,获得10
6分钟前
6分钟前
6分钟前
NS完成签到,获得积分10
6分钟前
锂电阳离子无序完成签到,获得积分10
6分钟前
6分钟前
嘬痰猩猩完成签到 ,获得积分10
6分钟前
小脸红扑扑完成签到 ,获得积分10
7分钟前
小二郎应助Omni采纳,获得10
8分钟前
8分钟前
世界完成签到,获得积分10
8分钟前
背后晓兰完成签到 ,获得积分10
9分钟前
xingsixs完成签到 ,获得积分10
10分钟前
Cassie发布了新的文献求助10
10分钟前
neversay4ever完成签到 ,获得积分10
11分钟前
科研通AI5应助秋日思语采纳,获得10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5173907
求助须知:如何正确求助?哪些是违规求助? 4363577
关于积分的说明 13585660
捐赠科研通 4212170
什么是DOI,文献DOI怎么找? 2310257
邀请新用户注册赠送积分活动 1309341
关于科研通互助平台的介绍 1256759