Development of spectral indices for detecting and identifying plant diseases

甜菜 尾孢菌 高光谱成像 白粉病 遥感 叶斑病 植物病害 农学 生物 生物技术 地理 生物化学
作者
Anne‐Katrin Mahlein,Till Rumpf,Pascal Welke,H. W. Dehne,Lutz Plümer,Ulrike Steiner,Erich-Christian Oerke
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:128: 21-30 被引量:531
标识
DOI:10.1016/j.rse.2012.09.019
摘要

Abstract Spectral vegetation indices (SVIs) have been shown to be useful for an indirect detection of plant diseases. However, these indices have not been evaluated to detect or to differentiate between plant diseases on crop plants. The aim of this study was to develop specific spectral disease indices (SDIs) for the detection of diseases in crops. Sugar beet plants and the three leaf diseases Cercospora leaf spot, sugar beet rust and powdery mildew were used as model system. Hyperspectral signatures of healthy and diseased sugar beet leaves were assessed with a non-imaging spectroradiometer at different developing stages and disease severities of pathogens. Significant and most relevant wavelengths and two band normalized differences from 450 to 950 nm, describing the impact of a disease on sugar beet leaves were extracted from the data-set using the RELIEF-F algorithm. To develop hyperspectral indices for the detection of sugar beet diseases the best weighted combination of a single wavelength and a normalized wavelength difference was exhaustively searched testing all possible combinations. The optimized disease indices were tested for their ability to detect and to classify healthy and diseased sugar beet leaves. With a high accuracy and sensitivity healthy sugar beet leaves and leaves, infected with Cercospora leaf spot, sugar beet rust and powdery mildew were classified (balanced classification accuracy: 89%, 92%, 87%, 85%, respectively). Spectral disease indices were also successfully applied on hyperspectral imaging data and on non-imaging data from a sugar beet field. Specific disease indices will improve disease detection, identification and monitoring in precision agriculture applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
烟花应助丰富的不惜采纳,获得10
2秒前
3秒前
脑洞疼应助小崔采纳,获得10
3秒前
4秒前
希望天下0贩的0应助sirhai采纳,获得10
5秒前
张雷应助Baneyhua采纳,获得10
5秒前
俗丨发布了新的文献求助10
6秒前
开放的煎蛋完成签到,获得积分20
7秒前
刘晓丹发布了新的文献求助10
7秒前
7秒前
天天快乐应助啊啊啊啊跃采纳,获得10
7秒前
鬼笔环肽发布了新的文献求助10
7秒前
研友_851KE8完成签到,获得积分10
7秒前
在水一方应助欢喜灵13采纳,获得10
7秒前
辛勤的孤容完成签到,获得积分10
8秒前
加减法发布了新的文献求助10
8秒前
9秒前
zxx发布了新的文献求助10
10秒前
hhhh完成签到 ,获得积分10
10秒前
北风语完成签到,获得积分10
13秒前
harmory完成签到,获得积分20
13秒前
嘿嘿完成签到,获得积分10
13秒前
咩咩发布了新的文献求助10
14秒前
顾矜应助刘晓丹采纳,获得10
16秒前
16秒前
18秒前
今年一定离开癫胡完成签到,获得积分10
18秒前
zxx完成签到,获得积分10
18秒前
yy完成签到,获得积分10
19秒前
19秒前
Vib完成签到,获得积分10
19秒前
Chelry发布了新的文献求助10
19秒前
21秒前
21秒前
Damiao发布了新的文献求助10
22秒前
yangz10完成签到 ,获得积分10
22秒前
Liangstar完成签到 ,获得积分10
23秒前
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958282
求助须知:如何正确求助?哪些是违规求助? 3504444
关于积分的说明 11118494
捐赠科研通 3235770
什么是DOI,文献DOI怎么找? 1788433
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802582