Development of spectral indices for detecting and identifying plant diseases

甜菜 尾孢菌 高光谱成像 白粉病 遥感 叶斑病 植物病害 农学 生物 生物技术 地理 生物化学
作者
Anne‐Katrin Mahlein,Till Rumpf,Pascal Welke,H. W. Dehne,Lutz Plümer,Ulrike Steiner,Erich-Christian Oerke
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:128: 21-30 被引量:555
标识
DOI:10.1016/j.rse.2012.09.019
摘要

Abstract Spectral vegetation indices (SVIs) have been shown to be useful for an indirect detection of plant diseases. However, these indices have not been evaluated to detect or to differentiate between plant diseases on crop plants. The aim of this study was to develop specific spectral disease indices (SDIs) for the detection of diseases in crops. Sugar beet plants and the three leaf diseases Cercospora leaf spot, sugar beet rust and powdery mildew were used as model system. Hyperspectral signatures of healthy and diseased sugar beet leaves were assessed with a non-imaging spectroradiometer at different developing stages and disease severities of pathogens. Significant and most relevant wavelengths and two band normalized differences from 450 to 950 nm, describing the impact of a disease on sugar beet leaves were extracted from the data-set using the RELIEF-F algorithm. To develop hyperspectral indices for the detection of sugar beet diseases the best weighted combination of a single wavelength and a normalized wavelength difference was exhaustively searched testing all possible combinations. The optimized disease indices were tested for their ability to detect and to classify healthy and diseased sugar beet leaves. With a high accuracy and sensitivity healthy sugar beet leaves and leaves, infected with Cercospora leaf spot, sugar beet rust and powdery mildew were classified (balanced classification accuracy: 89%, 92%, 87%, 85%, respectively). Spectral disease indices were also successfully applied on hyperspectral imaging data and on non-imaging data from a sugar beet field. Specific disease indices will improve disease detection, identification and monitoring in precision agriculture applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵钱孙李完成签到,获得积分20
刚刚
wang发布了新的文献求助10
1秒前
龙飞凤舞完成签到,获得积分0
1秒前
bkagyin应助啦啦啦啦啦啦啦采纳,获得10
1秒前
李瑞发布了新的文献求助10
2秒前
Tianju发布了新的文献求助10
2秒前
PualYoung发布了新的文献求助20
2秒前
jiwoong发布了新的文献求助10
2秒前
2秒前
向阳生长发布了新的文献求助10
2秒前
3秒前
活泼无敌发布了新的文献求助10
3秒前
脑洞疼应助一号采纳,获得10
4秒前
4秒前
4秒前
5秒前
jyylrl完成签到,获得积分10
5秒前
光轮2000完成签到 ,获得积分10
5秒前
6秒前
jixuchance完成签到,获得积分10
7秒前
liriyii发布了新的文献求助10
7秒前
花花发布了新的文献求助10
8秒前
8秒前
阿炳妹妹发布了新的文献求助10
8秒前
9秒前
9秒前
在水一方应助老实幻姬采纳,获得10
9秒前
浮游应助AA采纳,获得10
10秒前
制冷剂发布了新的文献求助10
10秒前
10秒前
郭正霄发布了新的文献求助10
10秒前
10秒前
11秒前
椿萱并茂完成签到 ,获得积分10
11秒前
赵苏程发布了新的文献求助10
11秒前
乐乐应助刘六采纳,获得10
12秒前
大个应助YufanZhang采纳,获得10
12秒前
12秒前
活力曼青完成签到,获得积分10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097313
求助须知:如何正确求助?哪些是违规求助? 4309783
关于积分的说明 13428428
捐赠科研通 4137300
什么是DOI,文献DOI怎么找? 2266533
邀请新用户注册赠送积分活动 1269654
关于科研通互助平台的介绍 1205978