纳米复合材料
材料科学
热重分析
肿胀 的
自愈水凝胶
结晶度
傅里叶变换红外光谱
化学工程
差示扫描量热法
复合材料
蒙脱石
高分子化学
物理
工程类
热力学
作者
Ali Karimi,Wan Mohd Ashri Wan Daud
摘要
A novel physicochemical crosslinked nanocomposite hydrogel based on polyvinyl alcohol (PVA) and natural Na‐montmorillonite (Na + ‐MMT) was synthesized by chemical crosslinking of nanocomposite hydrogel followed by a freezing‐thawing process. The effects of physical crosslinking, as well as physicochemical crosslinking, on the structure, morphology, and properties (thermal, mechanical, swelling, and deswelling) of nanocomposite hydrogels were investigated and compared with each other. The structure and morphology of nanocomposites were studied by Fourier transform infrared, X‐ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy techniques. The thermal and mechanical properties of nanocomposites that were affected by physical and physicochemical crosslinking were evaluated by thermogravimetric analysis, differential scanning calorimeter, dynamic mechanical analysis, hardness test, and Water vapor transmission rate (WVTR) experiments. The results showed that the physicochemical crosslinking of a PVA nanocomposite leads to a reduction in crystallinity and melting temperature, as well as an increase in the Hardness and WVTR compared to a physically crosslinked PVA nanocomposite hydrogel. The swelling and deswelling experiments were performed using a gravimetric method, and it was shown that controlled crosslinking of PVA nanocomposite hydrogel with glutaraldehyde causes the swelling ratio to increase and the cumulative amount of water loss to decrease. The swelling (sorption) and deswelling (desorption) kinetics data for physically and physicochemical crosslinking of nanocomposite hydrogels were fitted with a fickian model. It is concluded that through control crosslinking of PVA nanocomposite can lead to a hydrogel with higher swelling capacity than that is in conventional PVA nanocomposite hydrogel. POLYM. COMPOS., 37:897–906, 2016. © 2014 Society of Plastics Engineers
科研通智能强力驱动
Strongly Powered by AbleSci AI