硅粉
材料科学
腐蚀
刚玉
多孔性
渗透(战争)
复合材料
冶金
水泥
运筹学
工程类
作者
Wen Yan,Nan Li,Bingqiang Han
标识
DOI:10.1111/j.1744-7402.2008.02240.x
摘要
Corrosion of five corundum–spinel castables containing the same porous aggregates and different matrices by converter slag (C/S=3) was conducted using the static crucible test through the counting pixels method, XRD, SEM, EDAX, and so on. It was found that the corrosion and penetration resistance depend on the microsilica content. Microsilica content strongly affects liquid phase formation in the matrix, changes the porosity, pore size distribution of matrix, and viscosity of slag penetrated, and thus affects its corrosion and penetration resistance. Increasing microsilica, decreasing the porosity, or increasing the viscosity of the penetrating slag improves, whereas increasing the pore size or liquid content reduces the penetration and corrosion resistance. The penetration resistance increased abruptly with an increase of the microsilica content from 0.65 to 1.95 wt%, but changed slightly with increase of the microsilica content from 1.95 to 3.90 wt%. The corrosion resistance increased with an increase of the microsilica content from 0 to 2.60 wt%, but slightly decreased with a further increase of the microsilica content to 3.90 wt%. 1.95–2.60 wt% microsilica leads to a compromise between low corrosion and low penetration.
科研通智能强力驱动
Strongly Powered by AbleSci AI