基因亚型
延迟(音频)
生物
基因
基因表达
细胞生物学
遗传学
计算机科学
电信
作者
Renee M. Miller,Howard J. Federoff
标识
DOI:10.1016/j.neurobiolaging.2006.09.006
摘要
Alzheimer's disease (AD) is a common and devastating neurodegenerative disease in which most cases are of unknown, sporadic origin. In addition to age, the most prevalent known risk factor for developing AD is carriage of the ɛ4 allele of Apolipoprotein E (ApoE). Carriage of the ɛ2 or ɛ3 allele of ApoE confers protection or no change in risk for AD, respectively. Latent herpes simplex virus type 1 (HSV-1) infection in the brain concurrent with ApoE4 carriage exacerbates risk for AD, suggesting that these two factors interact to promote neuronal dysfunction and degeneration in selective brain areas. Indeed, HSV-1 DNA has been found in regions primarily affected by AD, such as the temporal lobes, hippocampus, and neocortex. We hypothesize that HSV-1 infection in the background of ApoE4, but not ApoE2 or ApoE3, promotes an environment more conducive to neuronal degeneration. To investigate this idea, we have utilized transgenic mice that express human ApoE2, 3, or 4 alleles from astrocytes in a murine ApoE −/− background. We find that carriage of the different ApoE alleles dramatically affects HSV-1 immediate early gene expression as well as the establishment of latency. Both of these factors are poised to impact neuronal viability, inflammation, and viral spread. Our data support the concept that HSV-1 and ApoE4 interact to provide an environment conducive to the development and/or spread of AD.
科研通智能强力驱动
Strongly Powered by AbleSci AI