扩展卡尔曼滤波器
荷电状态
电池(电)
卡尔曼滤波器
协方差
锂离子电池
人工神经网络
趋同(经济学)
计算机科学
控制理论(社会学)
状态空间表示
工程类
算法
数学
人工智能
功率(物理)
物理
统计
经济
控制(管理)
量子力学
经济增长
作者
Mohammad Charkhgard,Mohammad Farrokhi
出处
期刊:IEEE Transactions on Industrial Electronics
[Institute of Electrical and Electronics Engineers]
日期:2010-12-01
卷期号:57 (12): 4178-4187
被引量:648
标识
DOI:10.1109/tie.2010.2043035
摘要
This paper presents a method for modeling and estimation of the state of charge (SOC) of lithium-ion (Li-Ion) batteries using neural networks (NNs) and the extended Kalman filter (EKF). The NN is trained offline using the data collected from the battery-charging process. This network finds the model needed in the state-space equations of the EKF, where the state variables are the battery terminal voltage at the previous sample and the SOC at the present sample. Furthermore, the covariance matrix for the process noise in the EKF is estimated adaptively. The proposed method is implemented on a Li-Ion battery to estimate online the actual SOC of the battery. Experimental results show a good estimation of the SOC and fast convergence of the EKF state variables.
科研通智能强力驱动
Strongly Powered by AbleSci AI