纳米晶
超晶格
化学
化学物理
球形填料
结晶
三元运算
粒子(生态学)
自组装
结晶学
球体
星团(航天器)
透射电子显微镜
半径
等球密排
硬球
胶束
纳米颗粒
纳米技术
二进制数
凝聚态物理
计算化学
物理
材料科学
物理化学
数学
计算机安全
海洋学
算术
计算机科学
复合材料
程序设计语言
有机化学
天文
水溶液
地质学
作者
Michael A. Boles,Dmitri V. Talapin
摘要
This work analyzes the role of hydrocarbon ligands in the self-assembly of nanocrystal (NC) superlattices. Typical NCs, composed of an inorganic core of radius R and a layer of capping ligands with length L, can be described as soft spheres with softness parameter L/R. Using particle tracking measurements of transmission electron microscopy images, we find that close-packed NCs, like their hard-sphere counterparts, fill space at approximately 74% density independent of softness. We uncover deformability of the ligand capping layer that leads to variable effective NC size in response to the coordination environment. This effect plays an important role in the packing of particles in binary nanocrystal superlattices (BNSLs). Measurements on BNSLs composed of NCs of varying softness in several coordination geometries indicate that NCs deform to produce dense BNSLs that would otherwise be low-density arrangements if the particles remained spherical. Consequently, rationalizing the mixing of two NC species during BNSL self-assembly need not employ complex energetic interactions. We summarize our analysis in a set of packing rules. These findings contribute to a general understanding of entropic effects during crystallization of deformable objects (e.g., nanoparticles, micelles, globular proteins) that can adapt their shape to the local coordination environment.
科研通智能强力驱动
Strongly Powered by AbleSci AI