泥炭
生物地球化学循环
环境科学
土壤碳
维管植物
生物地球化学
植被(病理学)
土壤有机质
全球变暖
植物凋落物
气候变化
生态学
生态系统
土壤水分
土壤科学
生物
医学
病理
物种丰富度
作者
Luca Bragazza,Julien Parisod,Alexandre Buttler,Richard D. Bardgett
摘要
Peatlands are important sinks for carbon dioxide, but how their biogeochemistry will be affected by climate warming is poorly understood. This study compares sites along an altitudinal gradient, simulating a natural gradient in soil temperature to elucidate plant–soil microbe feedback in response to a climate-induced change in vegetation. Peatlands act as global sinks of atmospheric carbon (C) through the accumulation of organic matter1, primarily made up of decay-resistant litter of peat mosses2. However, climate warming has been shown to promote vascular plant growth in peatlands, especially ericaceous shrubs3. A change in vegetation cover is in turn expected to modify above-ground/below-ground interactions4, but the biogeochemical mechanisms involved remain unknown. Here, by selecting peatlands at different altitudes to simulate a natural gradient of soil temperature, we show that the expansion of ericaceous shrubs with warming is associated with an increase of polyphenol content in both plant litter and pore water. In turn, this retards the release of nitrogen (N) from decomposing litter, increases the amount of dissolved organic N and reduces N immobilization by soil microbes. A decrease of soil water content with increasing temperature promotes the growth of fungi, which feeds back positively on ericaceous shrubs by facilitating the symbiotic acquisition of dissolved organic N. We also observed a higher release of labile C from vascular plant roots at higher soil temperatures, which promotes the microbial investment in C-degrading enzymes. Our data suggest that climate-induced changes in plant cover can reduce the productivity of peat mosses and potentially prime the decomposition of organic matter by affecting the stoichiometry of soil enzymatic activity.
科研通智能强力驱动
Strongly Powered by AbleSci AI