Least angle regression

Lasso(编程语言) 普通最小二乘法 数学 算法 选择(遗传算法) 集合(抽象数据类型) 选型 弹性网正则化 线性回归 回归 特征选择 数学优化 对比度(视觉) 最小二乘函数近似 计算机科学 人工智能 统计 估计员 万维网 程序设计语言
作者
Bradley Efron,Trevor Hastie,Iain M. Johnstone,Robert Tibshirani
出处
期刊:Annals of Statistics [Institute of Mathematical Statistics]
卷期号:32 (2) 被引量:9375
标识
DOI:10.1214/009053604000000067
摘要

The purpose of model selection algorithms such as All Subsets, Forward Selection and Backward Elimination is to choose a linear model on the basis of the same set of data to which the model will be applied. Typically we have available a large collection of possible covariates from which we hope to select a parsimonious set for the efficient prediction of a response variable. Least Angle Regression (LARS), a new model selection algorithm, is a useful and less greedy version of traditional forward selection methods. Three main properties are derived: (1) A simple modification of the LARS algorithm implements the Lasso, an attractive version of ordinary least squares that constrains the sum of the absolute regression coefficients; the LARS modification calculates all possible Lasso estimates for a given problem, using an order of magnitude less computer time than previous methods. (2) A different LARS modification efficiently implements Forward Stagewise linear regression, another promising new model selection method; this connection explains the similar numerical results previously observed for the Lasso and Stagewise, and helps us understand the properties of both methods, which are seen as constrained versions of the simpler LARS algorithm. (3) A simple approximation for the degrees of freedom of a LARS estimate is available, from which we derive a Cp estimate of prediction error; this allows a principled choice among the range of possible LARS estimates. LARS and its variants are computationally efficient: the paper describes a publicly available algorithm that requires only the same order of magnitude of computational effort as ordinary least squares applied to the full set of covariates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI2S应助刘仁轨采纳,获得10
1秒前
杨榆藤完成签到,获得积分10
2秒前
天行马完成签到,获得积分10
3秒前
syy完成签到,获得积分10
3秒前
4秒前
端庄的砖头完成签到,获得积分10
4秒前
sigla完成签到 ,获得积分10
4秒前
llllzzh完成签到 ,获得积分10
4秒前
修好世界完成签到,获得积分10
5秒前
憨先生完成签到,获得积分10
5秒前
sun完成签到,获得积分10
6秒前
按时顺利毕业完成签到,获得积分10
7秒前
Dannerys完成签到 ,获得积分10
7秒前
明天好完成签到,获得积分10
8秒前
marco完成签到,获得积分10
9秒前
10秒前
Warten995完成签到,获得积分10
10秒前
gzgljh完成签到,获得积分10
11秒前
自觉语琴完成签到 ,获得积分10
12秒前
weulo完成签到,获得积分20
12秒前
雯雯完成签到,获得积分10
12秒前
hhm完成签到,获得积分10
13秒前
13秒前
传奇3应助rtpa采纳,获得10
15秒前
jjjwln完成签到,获得积分10
15秒前
Rimbaud发布了新的文献求助10
16秒前
学习发布了新的文献求助10
16秒前
酷酷的紫南完成签到 ,获得积分10
17秒前
Chanceman发布了新的文献求助10
17秒前
贤惠的迎夏完成签到,获得积分10
18秒前
苹果含烟完成签到,获得积分10
19秒前
勤奋的灯完成签到 ,获得积分10
20秒前
20秒前
keyanxiaobai完成签到,获得积分10
21秒前
谢家宝树完成签到,获得积分10
21秒前
22秒前
sherry完成签到,获得积分10
23秒前
23秒前
学术骗子小刚完成签到,获得积分0
23秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3729255
求助须知:如何正确求助?哪些是违规求助? 3274428
关于积分的说明 9985420
捐赠科研通 2989636
什么是DOI,文献DOI怎么找? 1640667
邀请新用户注册赠送积分活动 779292
科研通“疑难数据库(出版商)”最低求助积分说明 748165