Room-temperature ferroelectricity in strained SrTiO3

铁电性 电介质 材料科学 电场 钛酸锶 凝聚态物理 微波食品加热 相变 转变温度 极化(电化学) 外延 基质(水族馆) 光电子学 纳米技术 化学 物理化学 物理 超导电性 量子力学 海洋学 地质学 图层(电子)
作者
J. H. Haeni,Patrick Irvin,Wontae Chang,R. Uecker,P. Reiche,Yulan Li,Samrat Choudhury,Wei Tian,M. E. Hawley,B. Craigo,A. K. Tagantsev,Xiaoqing Pan,S. K. Streiffer,Long‐Qing Chen,S. W. Kirchoefer,Jeremy Levy,Darrell G. Schlom
出处
期刊:Nature [Springer Nature]
卷期号:430 (7001): 758-761 被引量:1995
标识
DOI:10.1038/nature02773
摘要

Systems with a ferroelectric to paraelectric transition in the vicinity of room temperature are useful for devices. Adjusting the ferroelectric transition temperature (T(c)) is traditionally accomplished by chemical substitution-as in Ba(x)Sr(1-x)TiO(3), the material widely investigated for microwave devices in which the dielectric constant (epsilon(r)) at GHz frequencies is tuned by applying a quasi-static electric field. Heterogeneity associated with chemical substitution in such films, however, can broaden this phase transition by hundreds of degrees, which is detrimental to tunability and microwave device performance. An alternative way to adjust T(c) in ferroelectric films is strain. Here we show that epitaxial strain from a newly developed substrate can be harnessed to increase T(c) by hundreds of degrees and produce room-temperature ferroelectricity in strontium titanate, a material that is not normally ferroelectric at any temperature. This strain-induced enhancement in T(c) is the largest ever reported. Spatially resolved images of the local polarization state reveal a uniformity that far exceeds films tailored by chemical substitution. The high epsilon(r) at room temperature in these films (nearly 7,000 at 10 GHz) and its sharp dependence on electric field are promising for device applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助马洛采纳,获得10
1秒前
十七完成签到,获得积分10
1秒前
2秒前
兴奋汽车完成签到,获得积分10
2秒前
学就完了完成签到,获得积分10
2秒前
张志顺发布了新的文献求助10
2秒前
岁月轮回发布了新的文献求助10
2秒前
长情洙发布了新的文献求助10
2秒前
Rickstein完成签到,获得积分10
3秒前
炙热冰夏完成签到,获得积分10
3秒前
iNk应助兴奋汽车采纳,获得10
4秒前
共享精神应助kingwhitewing采纳,获得10
4秒前
4秒前
暖若安阳完成签到,获得积分20
4秒前
糕糕完成签到,获得积分10
4秒前
屈绮兰发布了新的文献求助50
4秒前
绵绵发布了新的文献求助10
5秒前
周亭完成签到,获得积分10
5秒前
5秒前
6秒前
科研顺利毕业顺利工作顺利完成签到,获得积分20
7秒前
隐形机器猫完成签到,获得积分20
7秒前
bjx完成签到,获得积分20
8秒前
8秒前
8秒前
Jasper应助西瓜采纳,获得10
8秒前
lily完成签到,获得积分10
9秒前
愉快冰淇淋完成签到,获得积分10
9秒前
9秒前
天真的和现实的电影家完成签到,获得积分10
10秒前
111完成签到,获得积分10
11秒前
大力的契完成签到,获得积分10
11秒前
11秒前
QQ完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
上官若男应助嘟嘟采纳,获得10
12秒前
晨雨完成签到,获得积分10
13秒前
张志顺完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762