A Deep Learning-Based Sentiment Analysis Approach for Online Product Ranking With Probabilistic Linguistic Term Sets

期限(时间) 情绪分析 排名(信息检索) 人工智能 概率逻辑 计算机科学 自然语言处理 产品(数学) 机器学习 语言学 数学 哲学 物理 几何学 量子力学
作者
Zixu Liu,Huchang Liao,Maolin Li,Qian Yang,Fanlin Meng
出处
期刊:IEEE Transactions on Engineering Management [Institute of Electrical and Electronics Engineers]
卷期号:71: 6677-6694 被引量:15
标识
DOI:10.1109/tem.2023.3271597
摘要

The probabilities linguistic term set (PLTS) is an efficient tool to represent sentimental intensities hidden in unstructured text reviews that are useful for multicriteria online product ranking. Traditional machine learning-based sentiment analysis methods adopted in existing studies to obtain PLTSs often result in unsatisfying prediction accuracy and, thus, inevitably affect product ranking results. To overcome this limitation, in this study, we propose a deep learning-based sentiment analysis approach to produce PLTSs from online product reviews to rank online products. A natural language processing-based method is first applied to extract product features and corresponding feature texts from online reviews. Then, state-of-the-art deep learning-based models are implemented to conduct the sentiment classification for online product/feature review texts. To ensure classification accuracy, we propose an experimental matching mechanism to identify the level of sentiment tendency for all rating labels of a review dataset and then match each label with the most appropriate linguistic term. The experimental results reveal that our matching mechanism can benefit the training of a text classification model to identify sentiment tendencies from review texts with high prediction accuracy and with the help of the trained classification model, our approach can predict sentimental intensities of the extracted features' texts in the form of PLTSs with competitive accuracy. A case study of applying PLTSs output from our approach to an online product decision-making problem is also provided to validate the applicability of our approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ukmy发布了新的文献求助10
刚刚
萝卜花1968完成签到,获得积分10
刚刚
毛儿豆儿发布了新的文献求助10
1秒前
yy应助上好佳采纳,获得10
1秒前
Hello应助jj采纳,获得10
1秒前
充电宝应助陈皮糖不酸采纳,获得10
2秒前
2秒前
2秒前
在水一方应助俏皮的白柏采纳,获得10
2秒前
3秒前
5秒前
5秒前
yoyocici1505完成签到,获得积分10
7秒前
7秒前
8秒前
脑洞疼应助呆萌的采纳,获得10
8秒前
11秒前
11秒前
nice1025发布了新的文献求助30
11秒前
11秒前
思源应助albertxin采纳,获得10
12秒前
12秒前
just_cook完成签到,获得积分10
14秒前
14秒前
14秒前
苏苏发布了新的文献求助10
14秒前
墨墨叻发布了新的文献求助10
15秒前
可爱的函函应助苹果老三采纳,获得10
16秒前
yhuang发布了新的文献求助10
16秒前
Lucas应助雨水采纳,获得10
16秒前
17秒前
18秒前
18秒前
机灵寒烟发布了新的文献求助10
22秒前
22秒前
周涨杰完成签到 ,获得积分10
22秒前
mm发布了新的文献求助10
23秒前
24秒前
EasonChan发布了新的文献求助10
24秒前
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952701
求助须知:如何正确求助?哪些是违规求助? 3498211
关于积分的说明 11090706
捐赠科研通 3228753
什么是DOI,文献DOI怎么找? 1785094
邀请新用户注册赠送积分活动 869086
科研通“疑难数据库(出版商)”最低求助积分说明 801350