材料科学
超亲水性
润湿
磺酸盐
化学工程
聚电解质
吸附
石英晶体微天平
生物污染
涂层
高分子化学
复合材料
聚合物
有机化学
膜
钠
化学
冶金
工程类
生物化学
作者
Rong Wang,Chongling Cheng,Huiyun Wang,Tao Qi,Dayang Wang
标识
DOI:10.1002/adfm.202301085
摘要
Abstract In this study, poly(vinyl sulfonate) (PVS)–capped surfaces are constructed on the polyelectrolyte multilayers (PEMs) of poly(diallyldimethylammonium chloride) and poly(styrene sulfonate) via electrostatic assembly. The water wetting behavior on the resulting PVS‐capped PEMs is meticulously correlated with the number of surface sulfonate groups with the aid of sum frequency generation spectroscopy and quartz crystal microbalance. It is found that when the molecular packing density of surface sulfonate groups is adjusted to be comparable to the maximal packing density of spheres in two dimensions (≈0.9), the PVS capping is able to effectively adsorb water molecules from the surrounding to form hydrogen‐bonded networks, which not only promote complete surface wetting by water in air but also diminish surface affinity to adhesion of ice, oil and wax deposited atop. As a result, the PVS‐capped PEMs are able to fulfil all the self‐cleaning functions proposed for superhydrophilic surfaces including anti‐fogging, anti‐icing, anti‐grease, anti‐smudge, anti‐graffiti, and anti‐wax. After being coated with the self‐cleaning PVS‐capped PEMs, conventional stainless steel meshes are able to perform oil‐water separation without prior water wetting.
科研通智能强力驱动
Strongly Powered by AbleSci AI