High thermoelectric performance and anisotropy studies of n-type Mg3Bi2-based single crystal

热电效应 材料科学 各向异性 塞贝克系数 热导率 兴奋剂 热电材料 凝聚态物理 电阻率和电导率 单晶 范德瓦尔斯力 光电子学 热力学 结晶学 光学 复合材料 化学 分子 电气工程 物理 工程类 有机化学
作者
Qiqi Wang,Kefeng Liu,Yuan-Yuan Su,Xiao‐Cun Liu,Qian Liu,Shun Zhou,Jian Liu,Sheng‐Qing Xia
出处
期刊:Acta Materialia [Elsevier]
卷期号:255: 119028-119028 被引量:12
标识
DOI:10.1016/j.actamat.2023.119028
摘要

Layered high-performing Mg3Bi2-based materials which made from nontoxic and earth-abundant elements have been considered as a promising thermoelectric candidate for low-grade energy recycling. High-quality compositionally controllable Mg3Bi2-based single crystals are grown using modified Bridgman method. The anisotropy of in- and out of plane in high-quality Mg3Bi1.49Sb0.5Te0.01 bulk single crystals are clearly characterized, record high ZT of ∼0.9 at 300 K as well as excellent ZTavg of 1.26 in the temperature range of 300-523 K are achieved along ab-plane, both of which rank as top values among the reported literature. Owing to the higher mobility (266 vs 189 cm2·V−1·s−1), the electrical conductivity along ab-plane is about 25% larger than that along c-axis at room temperature. Besides, Seebeck coefficient and lattice thermal conductivity are insensitive to the direction, resulting in anisotropy of thermoelectric performance but smaller than van der Waals layered materials. Compared with parent Mg3Bi1.5Sb0.5, both carrier concentration and mobility are significant improved with quantitative Te doping, leading to greatly enhanced power factor. With in-depth investigations of anisotropy, the results presented here will advance the fundamental understanding of Mg3Bi2-based system and suggest new ideas on design of the state-of-art thermoelectric materials with high performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
五花肉应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
刚刚
五花肉应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
乐乐应助科研通管家采纳,获得30
刚刚
刚刚
1秒前
1秒前
改改关注了科研通微信公众号
1秒前
1秒前
酷炫素发布了新的文献求助10
2秒前
shiyu发布了新的文献求助10
2秒前
DOG发布了新的文献求助10
5秒前
充电宝应助调皮的天真采纳,获得10
5秒前
之组长了发布了新的文献求助10
6秒前
fugu0完成签到,获得积分10
7秒前
NY完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
踢踢踢踢踢死你完成签到,获得积分10
10秒前
msirtx完成签到,获得积分10
10秒前
共享精神应助shiyu采纳,获得10
11秒前
追寻清完成签到,获得积分10
11秒前
酷炫素完成签到,获得积分10
11秒前
11秒前
小蘑菇应助之组长了采纳,获得30
12秒前
Akim应助yi采纳,获得10
12秒前
PG发布了新的文献求助10
12秒前
yang完成签到,获得积分10
13秒前
丁三问发布了新的文献求助10
13秒前
14秒前
哈哈哈发布了新的文献求助10
14秒前
不爱科研发布了新的文献求助10
15秒前
Ava应助Run采纳,获得10
18秒前
18秒前
长情的涔完成签到 ,获得积分10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310273
求助须知:如何正确求助?哪些是违规求助? 2943254
关于积分的说明 8513427
捐赠科研通 2618482
什么是DOI,文献DOI怎么找? 1431111
科研通“疑难数据库(出版商)”最低求助积分说明 664374
邀请新用户注册赠送积分活动 649557