Energy absorption prediction for lattice structure based on D2 shape distribution and machine learning

格子(音乐) 生物系统 人工神经网络 吸收(声学) 材料科学 可转让性 计算机科学 人工智能 机器学习 复合材料 物理 声学 生物 罗伊特
作者
Yirun Wu,Zhongfa Mao,Yiqing Feng
出处
期刊:Composite Structures [Elsevier BV]
卷期号:319: 117136-117136
标识
DOI:10.1016/j.compstruct.2023.117136
摘要

Although lattice structure (LS) has the advantages of light weight, energy absorption, and high specific strength, exhibiting different mechanical properties with different structural forms. Thus, the vast design space gives a great challenge for properties prediction of LS. In this research, 210 unit cells with different shapes were designed and their D2 vectors describing the shape were extracted. A deep neural network method based on D2 distribution was employed to predict energy absorption effects. Moreover, to validate the transferability of the method, three new unit cells were designed and fabricated by additive manufacturing for experiments. The results show that the proposed method can well predict the energy absorption effect with ∼13 % error and the performance rank even of novel unit cells beyond the dataset. A good correlation between experimental values and predictions demonstrates the effectiveness of the method. In addition, through investigation of size effect for lattice structure, it is found that the energy absorption effect has a slow increase with the size factor, and their performance rank does not vary with the change of the size factor. This study could contribute to accelerating the design process of LS for specific applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
领导范儿应助十一苗采纳,获得30
2秒前
2秒前
3秒前
喜悦砖家完成签到,获得积分10
3秒前
可爱的函函应助Sss采纳,获得10
4秒前
4秒前
5秒前
胡萝卜发布了新的文献求助10
5秒前
6秒前
7秒前
科研通AI5应助水门采纳,获得30
7秒前
Suki发布了新的文献求助10
8秒前
Sal完成签到 ,获得积分10
8秒前
Dr完成签到,获得积分10
9秒前
11秒前
xc发布了新的文献求助10
12秒前
12秒前
12秒前
呆呆不呆Zz完成签到,获得积分10
14秒前
14秒前
15秒前
雪山大地完成签到,获得积分10
15秒前
TT完成签到,获得积分20
15秒前
丁一完成签到,获得积分10
15秒前
传奇3应助胡萝卜采纳,获得10
16秒前
十一苗发布了新的文献求助30
16秒前
16秒前
水门发布了新的文献求助30
17秒前
xc完成签到,获得积分10
17秒前
19秒前
丁一发布了新的文献求助10
21秒前
Suki发布了新的文献求助10
22秒前
22秒前
22秒前
安详可燕完成签到,获得积分20
22秒前
彭于晏应助yrh采纳,获得10
22秒前
22秒前
23秒前
reuslee发布了新的文献求助10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673916
求助须知:如何正确求助?哪些是违规求助? 3229353
关于积分的说明 9785316
捐赠科研通 2939948
什么是DOI,文献DOI怎么找? 1611486
邀请新用户注册赠送积分活动 760931
科研通“疑难数据库(出版商)”最低求助积分说明 736344