Improvement of lubrication performance of sliding pairs with multi-depth groove textures based on genetic algorithm

纹理(宇宙学) 润滑 材料科学 沟槽(工程) 曲面(拓扑) 摩擦系数 算法 数学 复合材料 几何学 计算机科学 人工智能 图像(数学) 冶金
作者
Shaojun Li,Zhenpeng Wu,Bowen Dong,Wenyan Luo,Hailong Song,Hao Guo,Qing Zhou
出处
期刊:Surface topography [IOP Publishing]
卷期号:11 (2): 025011-025011
标识
DOI:10.1088/2051-672x/acd46a
摘要

Abstract During the wear and tear process of bearings, the friction coefficient between the friction pairs can be effectively decreased by employing the suitable surface texture on the frition surface. In the study, the distribution and depth variation of the surface texture were used as variables, and the genetic algorithm was used for iterative optimization to obtain the optimal texture distribution and depth. The friction and wear performance of the rectangular texture bearing sliding blocks was optimized. The depth of the texture was represented by a 4-bit binary number, and different binary numbers were set to represent different texture depths. Finally, the genetic algorithm was used for continuous iteration and evolution to obtain the optimal texture combination. The study showed that, compared with the regular texture with a depth of 0.2 μ m, the friction coefficient decreased by 15.0% under the optimal texture with a non-uniform depth. Simultaneously, compared with the regular 3 μ m deep texture, texture with a optimized depth makes the friction coefficient decreased by 37.5%, and the minimum oil film thickness increased by 0.979 μ m. The optimal texture and oil film thickness combination obtained from the study can effectively reduce solid contact force and alleviate mechanical wear.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无奈满天发布了新的文献求助10
1秒前
2秒前
MADKAI发布了新的文献求助10
2秒前
2秒前
贪玩丸子完成签到,获得积分10
2秒前
神勇的雅香应助liutaili采纳,获得10
3秒前
KSGGS完成签到,获得积分10
3秒前
YANG关注了科研通微信公众号
3秒前
4秒前
4秒前
4秒前
99发布了新的文献求助10
5秒前
5秒前
科研通AI5应助qi采纳,获得10
5秒前
乐乐发布了新的文献求助10
6秒前
铸一字错发布了新的文献求助10
6秒前
受伤书文完成签到,获得积分10
7秒前
Yvonne发布了新的文献求助10
7秒前
7秒前
温柔的十三完成签到,获得积分10
7秒前
Ll发布了新的文献求助10
8秒前
nikai发布了新的文献求助10
8秒前
圣晟胜发布了新的文献求助10
8秒前
大个应助科研通管家采纳,获得10
8秒前
8秒前
田様应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
Leif应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
shouyu29应助科研通管家采纳,获得10
9秒前
9秒前
小金应助科研通管家采纳,获得20
9秒前
牛逼的昂完成签到,获得积分10
9秒前
muzi给muzi的求助进行了留言
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759