Improvement of lubrication performance of sliding pairs with multi-depth groove textures based on genetic algorithm

纹理(宇宙学) 润滑 材料科学 沟槽(工程) 曲面(拓扑) 摩擦系数 算法 数学 复合材料 几何学 计算机科学 人工智能 图像(数学) 冶金
作者
Shaojun Li,Zhenpeng Wu,Bowen Dong,Wenyan Luo,Hailong Song,Hao Guo,Qing Zhou
出处
期刊:Surface topography [IOP Publishing]
卷期号:11 (2): 025011-025011
标识
DOI:10.1088/2051-672x/acd46a
摘要

Abstract During the wear and tear process of bearings, the friction coefficient between the friction pairs can be effectively decreased by employing the suitable surface texture on the frition surface. In the study, the distribution and depth variation of the surface texture were used as variables, and the genetic algorithm was used for iterative optimization to obtain the optimal texture distribution and depth. The friction and wear performance of the rectangular texture bearing sliding blocks was optimized. The depth of the texture was represented by a 4-bit binary number, and different binary numbers were set to represent different texture depths. Finally, the genetic algorithm was used for continuous iteration and evolution to obtain the optimal texture combination. The study showed that, compared with the regular texture with a depth of 0.2 μ m, the friction coefficient decreased by 15.0% under the optimal texture with a non-uniform depth. Simultaneously, compared with the regular 3 μ m deep texture, texture with a optimized depth makes the friction coefficient decreased by 37.5%, and the minimum oil film thickness increased by 0.979 μ m. The optimal texture and oil film thickness combination obtained from the study can effectively reduce solid contact force and alleviate mechanical wear.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bioli应助LGH采纳,获得10
刚刚
lijiaying0420发布了新的文献求助10
刚刚
lansing完成签到 ,获得积分10
刚刚
1秒前
95发布了新的文献求助10
1秒前
小情绪应助老实的百招采纳,获得10
1秒前
1秒前
1秒前
兴奋的曲奇完成签到,获得积分10
1秒前
科研小菜鸡完成签到,获得积分20
2秒前
旷野发布了新的文献求助10
2秒前
2秒前
2秒前
小苏苏完成签到,获得积分10
2秒前
科研副本完成签到,获得积分10
3秒前
科研通AI5应助SSR采纳,获得10
3秒前
安寒发布了新的文献求助10
3秒前
WZQ发布了新的文献求助10
4秒前
gsd发布了新的文献求助20
4秒前
4秒前
zhhhhh完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
NexusExplorer应助神勇的白竹采纳,获得10
5秒前
丘比特应助阿龙采纳,获得10
5秒前
刘春林完成签到,获得积分10
5秒前
5秒前
金子俊关注了科研通微信公众号
5秒前
6秒前
6秒前
7秒前
7秒前
7秒前
踏实的绝悟完成签到 ,获得积分10
7秒前
小苏苏发布了新的文献求助10
7秒前
7秒前
小马甲应助文献狂人采纳,获得10
8秒前
英姑应助zhhhhh采纳,获得10
9秒前
7777juju完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Wolbachia-mediated fitness enhancement and reproductive manipulation in the South American tomato pinworm, Tuta absoluta 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5098963
求助须知:如何正确求助?哪些是违规求助? 4311031
关于积分的说明 13433121
捐赠科研通 4138388
什么是DOI,文献DOI怎么找? 2267214
邀请新用户注册赠送积分活动 1270282
关于科研通互助平台的介绍 1206556